Gene Rv0166
in Mycobacterium tuberculosis H37Rv
General annotation
Type | CDS |
Function | Function unknown, but involved in lipid degradation. |
Product | Probable fatty-acid-CoA ligase FadD5 (fatty-acid-CoA synthetase) (fatty-acid-CoA synthase) |
Comments | Rv0166, (MTCI28.06), len: 554 aa. Probable fadD5, fatty-acid-CoA synthetase, similar to many eg LCFA_ECOLI|P29212 long-chain-fatty-acid--CoA ligase (561 aa), FASTA scores: opt: 612, E(): 0, (29.4% identity in 534 aa overlap). Also similar to many other fatty-acid-CoA ligases from Mycobacterium tuberculosis e.g. MTCY07A7.11c FASTA score: (35.3% identity in 487 aa overlap), MTV013_10, MTY25D10_30, etc. Contains PS00455 putative AMP-binding domain signature. |
Functional category | Lipid metabolism |
Proteomics | Translational start site supported by proteomics data (See Kelkar et al., 2011). |
Transcriptomics | mRNA identified by microarray analysis and down-regulated after 24h and 96h of starvation. RT-qPCR shows higher expression of fadD5|Rv0166, mce1A|Rv0169 and mce1F|Rv0174 in M. tuberculosis H37Rv mce1R|Rv0165 mutant than in H37Rv, after infection of murine macrophages (See Casali et al., 2006). |
Operon | Rv0166 and Rv0167 are co-transcribed, by RT-PCR (See Casali et al., 2006). |
Mutant | Non-essential gene for in vitro growth of H37Rv in a MtbYM rich medium, by Himar1 transposon mutagenesis (see Minato et al. 2019). Non-essential gene for in vitro growth of H37Rv, by analysis of saturated Himar1 transposon libraries (see DeJesus et al. 2017). Non essential gene by Himar1 transposon mutagenesis in H37Rv and CDC1551 strains (see Sassetti et al., 2003 and Lamichhane et al., 2003). Non-essential gene for in vitro growth of H37Rv, by Himar1 transposon mutagenesis (See Griffin et al., 2011). Check for mutants available at TARGET website |
Coordinates
Type | Start | End | Orientation |
---|---|---|---|
CDS | 194993 | 196657 | + |
Genomic sequence
Feature type
Upstream flanking region (bp)
Downstream flanking region (bp)
Update
Protein sequence
>Mycobacterium tuberculosis H37Rv|Rv0166|fadD5 LTAQLASHLTRALTLAQQQPYLARRQNWVNQLERHAMMQPDAPALRFVGNTMTWADLRRRVAALAGALSGRGVGFGDRVMILMLNRTEFVESVLAANMIGAIAVPLNFRLTPTEIAVLVEDCVAHVMLTEAALAPVAIGVRNIQPLLSVIVVAGGSSQDSVFGYEDLLNEAGDVHEPVDIPNDSPALIMYTSGTTGRPKGAVLTHANLTGQAMTALYTSGANINSDVGFVGVPLFHIAGIGNMLTGLLLGLPTVIYPLGAFDPGQLLDVLEAEKVTGIFLVPAQWQAVCTEQQARPRDLRLRVLSWGAAPAPDALLRQMSATFPETQILAAFGQTEMSPVTCMLLGEDAIAKRGSVGRVIPTVAARVVDQNMNDVPVGEVGEIVYRAPTLMSCYWNNPEATAEAFAGGWFHSGDLVRMDSDGYVWVVDRKKDMIISGGENIYCAELENVLASHPDIAEVAVIGRADEKWGEVPIAVAAVTNDDLRIEDLGEFLTDRLARYKHPKALEIVDALPRNPAGKVLKTELRLRYGACVNVERRSASAGFTERRENRQKL
Bibliography
- Betts JC et al. [2002]. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Transcriptome
- Lamichhane G et al. [2003]. A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis. Mutant
- Sassetti CM et al. [2003]. Genes required for mycobacterial growth defined by high density mutagenesis. Mutant
- Casali N, White AM and Riley LW [2006]. Regulation of the Mycobacterium tuberculosis mce1 operon. Mutant Operon
- Kelkar DS et al. [2011]. Proteogenomic analysis of Mycobacterium tuberculosis by high resolution mass spectrometry. Proteomics Sequence
- Griffin JE et al. [2011]. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. Mutant
- DeJesus MA et al. [2017]. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. Mutant
- Minato Y et al. [2019]. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways. Mutant