Gene Rv0663
in Mycobacterium tuberculosis H37Rv
General annotation
Type | CDS |
Function | Thought to play an important role in the mineralization of sulfates [catalytic activity: a phenol sulfate + H2O = a phenol + sulfate]. |
Product | Possible arylsulfatase AtsD (aryl-sulfate sulphohydrolase) (arylsulphatase) |
Comments | Rv0663, (MTCI376.13c), len: 787 aa. Possible atsD, arylsulfatase, similar to others e.g. P5169|ARS_PSEAE arylsulfatase from Pseudomonas aeruginosa (532 aa), FASTA scores: opt: 653, E(): 0, (33.1% identity in 544 aa overlap); etc. Also similar to P95059|MTCY210.30|ATSA|Rv0711|MTCY210.30 from Mycobacterium tuberculosis (787 aa), FASTA score: (38.9% identity in 769 aa overlap); and other arylsulfatases from Mycobacterium tuberculosis e.g. Rv3299c|ATSB (970 aa), Rv0711, etc. Contains PS00523 Sulfatases signature 1. Belongs to the sulfatase family. This region is a possible MT-complex-specific genomic island (See Becq et al., 2007). |
Functional category | Intermediary metabolism and respiration |
Proteomics | Identified by mass spectrometry in M. tuberculosis H37Rv-infected guinea pig lungs at 90 days but not 30 days (See Kruh et al., 2010). |
Mutant | Non-essential gene for in vitro growth of H37Rv in a MtbYM rich medium, by Himar1 transposon mutagenesis (see Minato et al. 2019). Non-essential gene for in vitro growth of H37Rv, by analysis of saturated Himar1 transposon libraries (see DeJesus et al. 2017). Non essential gene by Himar1 transposon mutagenesis in H37Rv and CDC1551 strains (see Sassetti et al., 2003 and Lamichhane et al., 2003). Essential gene for in vitro growth of H37Rv, by Himar1 transposon mutagenesis (See Griffin et al., 2011). Check for mutants available at TARGET website |
Coordinates
Type | Start | End | Orientation |
---|---|---|---|
CDS | 756137 | 758500 | + |
Genomic sequence
Feature type
Upstream flanking region (bp)
Downstream flanking region (bp)
Update
Protein sequence
>Mycobacterium tuberculosis H37Rv|Rv0663|atsD MPQPRTHLPIPSAARTGLITYDAKDPDSTYPPIEQLRPPAGAPNVLLILLDDVGFGASSAFGGPCRTSTAELLAGNGLRYNRFHTTALCSPTRQALLTGRNHHSAGMGGITEIATGAPGYSSVLPNTMSPIARTLKLNGYNTAQFGKCHEVPVWQTSPVGPFDAWPSGGGGFEYFYGFIGGEANQWYPSLYEGTTPVEVNRTPEEGYHFMADMTDKALGWIGQQKALAPDRPFFVYFAPGATHAPHHVPREWADKYRGRFDVGWDALREETFARQKELGVIPADCQLTARHAEIPAWDDMPEDLKPVLCRQMEVYAGFLEYTDHHVGRLVDGLQRLGVLDDTLVFYIIDDNGASAEGTINGTYNEMLNFNGLADIETPRFMTDRLDKFGGPESYNHYSVGWAHAMDTPYQWTKQVASHWGGTRNGTIVHWPNGIAAKGEMRWQFHHVIDVAPTILEAAGLPEPLFVNGVQQHPIEGVSMAYSFDDAQAPDRHETQYFEMFGNRGIYHKGWTAVTKHKTPWILVGEQTVAFDDDVWELYDTTKDWSQAKDLAKEMPEKLHELQRLWLIEATRYNVLPLDDDTASRINPDLAGRPVLIRGNTQVLFSNMGRLSENCVLNLKNKSHTVTAEVEVPETGAEGVIVAQGASIGGWSLYANDGKLKYCYNLGGIKHFYAESADPLPAGAHQVRMEFAYAGGGLGKGGEVTLYVDGQQVGEGHVEATLAIVFSADDGCDVGMDSGSPVSPDYAPGSNAFNGRIKGVQLAIAEAAAAAGHLVDPEHAIRIALARQ
Bibliography
- Lamichhane G et al. [2003]. A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis. Mutant
- Sassetti CM et al. [2003]. Genes required for mycobacterial growth defined by high density mutagenesis. Mutant
- Becq J, Gutierrez MC, Rosas-Magallanes V, Rauzier J, Gicquel B, Neyrolles O and Deschavanne P [2007]. Contribution of horizontally acquired genomic islands to the evolution of the tubercle bacilli. Sequence
- Kruh NA et al. [2010]. Portrait of a pathogen: the Mycobacterium tuberculosis proteome in vivo. Proteomics
- Griffin JE et al. [2011]. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. Mutant
- DeJesus MA et al. [2017]. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. Mutant
- Minato Y et al. [2019]. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways. Mutant