Gene Rv0721
in Mycobacterium tuberculosis H37Rv
General annotation
Type | CDS |
Function | Protein S5 is important in the assembly and function of the 30S ribosomal subunit. |
Product | 30S ribosomal protein S5 RpsE |
Comments | Rv0721, (MTCY210.40), len: 220 aa. rpsE, 30S ribosomal protein S5, equivalent to MLCB2492_21 ribosomal protein S5 from Mycobacterium leprae (217 aa). Also highly similar to others e.g. P46790|RS5_STRCO 30s ribosomal protein S5 from Streptomyces coelicolor (167 aa), FASTA scores: opt: 889, E(): 0, (82.1% identity in 162 aa overlap); etc. Note N-terminus is extented compared to other rpsE genes. Contains PS00585 Ribosomal protein S5 signature, PTS HPr component phosphorylation sites signature. Belongs to the S5P family of ribosomal proteins. |
Functional category | Information pathways |
Proteomics | Identified by proteomics (See Rosenkrands et al., 2000). Identified in the membrane fraction of M. tuberculosis H37Rv using 1D-SDS-PAGE and uLC-MS/MS (See Gu et al., 2003). Identified in the cytosol of M. tuberculosis H37Rv using 2DLC/MS (See Mawuenyega et al., 2005). Identified in the membrane fraction of M. tuberculosis H37Rv using nanoLC-MS/MS (See Xiong et al., 2005). Identified in the detergent phase of Triton X-114 extracts of M. tuberculosis H37Rv membranes using CEGE and MALDI-TOF-MS (See Sinha et al., 2005). Identified by mass spectrometry in Triton X-114 extracts of M. tuberculosis H37Rv (See Malen et al., 2010). Identified by mass spectrometry in the membrane protein fraction and whole cell lysates of M. tuberculosis H37Rv but not the culture filtrate (See de Souza et al., 2011). Translational start site supported by proteomics data (See Kelkar et al., 2011). |
Mutant | Essential gene for in vitro growth of H37Rv in a MtbYM rich medium, by Himar1 transposon mutagenesis (see Minato et al. 2019). Essential gene for in vitro growth of H37Rv, by analysis of saturated Himar1 transposon libraries (see DeJesus et al. 2017). Essential gene by Himar1 transposon mutagenesis in H37Rv strain (see Sassetti et al., 2003). Essential gene for in vitro growth of H37Rv, by Himar1 transposon mutagenesis (See Griffin et al., 2011). Check for mutants available at TARGET website |
Coordinates
Type | Start | End | Orientation |
---|---|---|---|
CDS | 814328 | 814990 | + |
Genomic sequence
Feature type
Upstream flanking region (bp)
Downstream flanking region (bp)
Update
Protein sequence
>Mycobacterium tuberculosis H37Rv|Rv0721|rpsE MAEQPAGQAGTTDNRDARGDREGRRRDSGRGSRERDGEKSNYLERVVAINRVSKVVKGGRRFSFTALVIVGDGNGMVGVGYGKAKEVPAAIAKGVEEARKSFFRVPLIGGTITHPVQGEAAAGVVLLRPASPGTGVIAGGAARAVLECAGVHDILAKSLGSDNAINVVHATVAALKLLQRPEEVAARRGLPIEDVAPAGMLKARRKSEALAASVLPDRTI
Bibliography
- Rosenkrands I et al. [2000]. Towards the proteome of Mycobacterium tuberculosis. Proteomics
- Gu S et al. [2003]. Comprehensive proteomic profiling of the membrane constituents of a Mycobacterium tuberculosis strain. Proteomics
- Sassetti CM et al. [2003]. Genes required for mycobacterial growth defined by high density mutagenesis. Mutant
- Mawuenyega KG et al. [2005]. Mycobacterium tuberculosis functional network analysis by global subcellular protein profiling. Proteomics
- Xiong Y, Chalmers MJ, Gao FP, Cross TA and Marshall AG [2005]. Identification of Mycobacterium tuberculosis H37Rv integral membrane proteins by one-dimensional gel electrophoresis and liquid chromatography electrospray ionization tandem mass spectrometry. Proteomics
- Sinha S, Kosalai K, Arora S, Namane A, Sharma P, Gaikwad AN, Brodin P and Cole ST [2005]. Immunogenic membrane-associated proteins of Mycobacterium tuberculosis revealed by proteomics. Proteomics
- MÃ¥len H et al. [2010]. Definition of novel cell envelope associated proteins in Triton X-114 extracts of Mycobacterium tuberculosis H37Rv. Proteomics
- Kelkar DS et al. [2011]. Proteogenomic analysis of Mycobacterium tuberculosis by high resolution mass spectrometry. Proteomics Sequence
- de Souza GA et al. [2011]. Bacterial proteins with cleaved or uncleaved signal peptides of the general secretory pathway. Proteomics
- Griffin JE et al. [2011]. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. Mutant
- DeJesus MA et al. [2017]. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. Mutant
- Minato Y et al. [2019]. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways. Mutant