Gene Rv0969
in Mycobacterium tuberculosis H37Rv
General annotation
Type | CDS |
Function | Metal cation-transporting ATPase; possibly catalyzes the transport of an undetermined metal cation with the hydrolysis of ATP [catalytic activity: ATP + H(2)O + undetermined metal cation(in) = ADP + phosphate + undetermined metal cation(out)]. |
Product | Probable metal cation transporter P-type ATPase CtpV |
Comments | Rv0969, (MTCY10D7.05c), len: 770 aa. Probable ctpV, metal cation transporter P-type ATPase (transmembrane protein) (see citation below), part of cso operon, highly similar (except in N-terminus) to others e.g. NP_391230.1|NC_000964 similar to heavy metal-transporting ATPase from Bacillus subtilis (803 aa); P37279|ATCS_SYNP7|PACS cation-transporting ATPase from Synechococcus sp. strain PCC 7942 (Anacystis nidulans R2) (747 aa), FASTA scores: opt: 1851, E(): 0, (52.1% identity in 664 aa overlap); etc. Equivalent to AAK45246.1 from Mycobacterium tuberculosis strain CDC1551 (792 aa) but shorter 22 aa. Contains PS00154 E1-E2 ATPases phosphorylation site. Belongs to the cation transport ATPases family (E1-E2 ATPases). |
Functional category | Cell wall and cell processes |
Proteomics | Identified in the membrane fraction of M. tuberculosis H37Rv using 1D-SDS-PAGE and uLC-MS/MS; predicted transmembrane protein (See Gu et al., 2003). Identified in the membrane fraction of M. tuberculosis H37Rv using nanoLC-MS/MS; predicted integral membrane protein (See Xiong et al., 2005). Identified by mass spectrometry in Triton X-114 extracts of M. tuberculosis H37Rv (See Malen et al., 2010). Identified by mass spectrometry in M. tuberculosis H37Rv-infected guinea pig lungs at 30 and 90 days (See Kruh et al., 2010). Identified by mass spectrometry in the membrane protein fraction and whole cell lysates of M. tuberculosis H37Rv but not the culture filtrate (See de Souza et al., 2011). |
Transcriptomics | mRNA identified by SCOTS method, 48h after infection of cultured human primary macrophages (see citation below). DNA microarrays detect expression in M. tuberculosis H37Rv in vivo (in BALB/c and SCID mice) but not in vitro (in 7H9 medium) (See Talaat et al., 2004). Expression in vtiro is increased in the presence of Cu and Ag, measured by qRT-PCR (See Ward et al., 2008). |
Operon | Rv0968 and Rv0969, Rv0969 and Rv0970 are co-transcribed, by RT-PCR (See Liu et al., 2007). |
Mutant | Non-essential gene for in vitro growth of H37Rv in a MtbYM rich medium, by Himar1 transposon mutagenesis (see Minato et al. 2019). Non-essential gene for in vitro growth of H37Rv, by analysis of saturated Himar1 transposon libraries (see DeJesus et al. 2017). Non essential gene by Himar1 transposon mutagenesis in H37Rv strain (see Sassetti et al., 2003). Non-essential gene for in vitro growth of H37Rv, by Himar1 transposon mutagenesis (See Griffin et al., 2011). Check for mutants available at TARGET website |
Coordinates
Type | Start | End | Orientation |
---|---|---|---|
CDS | 1078743 | 1081055 | + |
Genomic sequence
Feature type
Upstream flanking region (bp)
Downstream flanking region (bp)
Update
Protein sequence
>Mycobacterium tuberculosis H37Rv|Rv0969|ctpV MRVCVTGFNVDAVRAVAIEETVSQVTGVHAVHAYPRTASVVIWYSPELGDTAAVLSAITKAQHVPAELVPARAPHSAGVRGVGVVRKITGGIRRMLSRPPGVDKPLKASRCGGRPRGPVRGSASWPGEQNRRERRTWLPRVWLALPLGLLALGSSMFFGAYPWAGWLAFAATLPVQFVAGWPILRGAVQQARALTSNMDTLIALGTLTAFVYSTYQLFAGGPLFFDTSALIIAFVVLGRHLEARATGKASEAISKLLELGAKEATLLVDGQELLVPVDQVQVGDLVRVRPGEKIPVDGEVTDGRAAVDESMLTGESVPVEKTAGDRVAGATVNLDGLLTVRATAVGADTALAQIVRLVEQAQGDKAPVQRLADRVSAVFVPAVIGVAVATFAGWTLIAANPVAGMTAAVAVLIIACPCALGLATPTAIMVGTGRGAELGILVKGGEVLEASKKIDTVVFDKTGTLTRARMRVTDVIAGQRRQPDQVLRLAAAVESGSEHPIGAAIVAAAHERGLAIPAANAFTAVAGHGVRAQVNGGPVVVGRRKLVDEQHLVLPDHLAAAAVEQEERGRTAVFVGQDGQVVGVLAVADTVKDDAADVVGRLHAMGLQVAMITGDNARTAAAIAKQVGIEKVLAEVLPQDKVAEVRRLQDQGRVVAMVGDGVNDAPALVQADLGIAIGTGTDVAIEASDITLMSGRLDGVVRAIELSRQTLRTIYQNLGWAFGYNTAAIPLAALGALNPVVAGAAMGFSSVSVVTNSLRLRRFGRDGRTA
Bibliography
- Graham JE and Clark-Curtiss JE [1999]. Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). Transcriptome
- Gu S et al. [2003]. Comprehensive proteomic profiling of the membrane constituents of a Mycobacterium tuberculosis strain. Proteomics
- Sassetti CM et al. [2003]. Genes required for mycobacterial growth defined by high density mutagenesis. Mutant
- Talaat AM et al. [2004]. The temporal expression profile of Mycobacterium tuberculosis infection in mice. Transcriptome
- Xiong Y, Chalmers MJ, Gao FP, Cross TA and Marshall AG [2005]. Identification of Mycobacterium tuberculosis H37Rv integral membrane proteins by one-dimensional gel electrophoresis and liquid chromatography electrospray ionization tandem mass spectrometry. Proteomics
- Liu T et al. [2007]. CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator. Operon
- Ward SK et al. [2008]. The global responses of Mycobacterium tuberculosis to physiological levels of copper. Transcriptome
- Kruh NA et al. [2010]. Portrait of a pathogen: the Mycobacterium tuberculosis proteome in vivo. Proteomics
- MÃ¥len H et al. [2010]. Definition of novel cell envelope associated proteins in Triton X-114 extracts of Mycobacterium tuberculosis H37Rv. Proteomics
- de Souza GA et al. [2011]. Bacterial proteins with cleaved or uncleaved signal peptides of the general secretory pathway. Proteomics
- Griffin JE et al. [2011]. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. Mutant
- DeJesus MA et al. [2017]. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. Mutant
- Minato Y et al. [2019]. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways. Mutant