Go to browser
virulence, detoxification, adaptation
information pathways
cell wall and cell processes
stable RNAs
insertion seqs and phages
PE/PPE
intermediary metabolism and respiration
unknown
regulatory proteins
conserved hypotheticals
lipid metabolism
pseudogenes
General annotation
TypeCDS
FunctionProduces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the cf(0) complex.
ProductProbable ATP synthase gamma chain AtpG
CommentsRv1309, (MTCY373.29), len: 305 aa. Probable atpG, ATP synthase gamma chain, highly similar to ATPG_MYCLE|P45824 ATP synthase gamma chain from Mycobacterium leprae (298 aa), FASTA scores: opt: 1579, E():0, (83.9% identity in 305 aa overlap). Contains PS00153 ATP synthase gamma subunit signature. subunit: F-type ATPases have 2 components, cf(1) - the catalytic core - and cf(0) - the membrane proton channel. cf(1) has five subunits: alpha(3), beta(3), gamma(1), delta(1), epsilon(1). cf(0) has three main subunits: A, B and C. Belongs to the ATPase gamma chain family.
Functional categoryIntermediary metabolism and respiration
ProteomicsIdentified in carbonate extracts of M. tuberculosis H37Rv membranes using 2DGE and MALDI-MS (See Sinha et al., 2002). Identified in the membrane fraction of M. tuberculosis H37Rv using 1D-SDS-PAGE and uLC-MS/MS (See Gu et al., 2003). Identified in the cell wall fraction of M. tuberculosis H37Rv using 2DLC/MS (See Mawuenyega et al., 2005). Identified in the membrane fraction of M. tuberculosis H37Rv using nanoLC-MS/MS (See Xiong et al., 2005). Identified in the detergent phase of Triton X-114 extracts of M. tuberculosis H37Rv membranes using 1-DGE and MALDI-TOF-MS (See Sinha et al., 2005). Identified by mass spectrometry in Triton X-114 extracts of M. tuberculosis H37Rv (See Malen et al., 2010). Identified by mass spectrometry in the membrane protein fraction and whole cell lysates of M. tuberculosis H37Rv but not the culture filtrate (See de Souza et al., 2011).
TranscriptomicsmRNA identified by microarray analysis and down-regulated after 24h and 96h of starvation (see citation below).
MutantEssential gene for in vitro growth of H37Rv in a MtbYM rich medium, by Himar1 transposon mutagenesis (see Minato et al. 2019). Essential gene for in vitro growth of H37Rv, by analysis of saturated Himar1 transposon libraries (see DeJesus et al. 2017). Essential gene by Himar1 transposon mutagenesis in H37Rv strain (see Sassetti et al., 2003). Essential gene for in vitro growth of H37Rv, by Himar1 transposon mutagenesis (See Griffin et al., 2011).
Check for mutants available at TARGET website
Coordinates
TypeStartEndOrientation
CDS14648841465801+
Genomic sequence
Feature type Upstream flanking region (bp) Downstream flanking region (bp) Update
       
Protein sequence
>Mycobacterium tuberculosis H37Rv|Rv1309|atpG
MAATLRELRGRIRSAGSIKKITKAQELIATSRIARAQARLESARPYAFEITRMLTTLAAEAALDHPLLVERPEPKRAGVLVVSSDRGLCGAYNANIFRRSEELFSLLREAGKQPVLYVVGRKAQNYYSFRNWNITESWMGFSEQPTYENAAEIASTLVDAFLLGTDNGEDQRSDSGEGVDELHIVYTEFKSMLSQSAEAHRIAPMVVEYVEEDIGPRTLYSFEPDATMLFESLLPRYLTTRVYAALLESAASELASRQRAMKSATDNADDLIKALTLMANRERQAQITQEISEIVGGANALAEAR
      
Bibliography