Gene Rv1651c
in Mycobacterium tuberculosis H37Rv
General annotation
Type | CDS |
Function | Function unknown. Thought to be involved in virulence. |
Product | PE-PGRS family protein PE_PGRS30 |
Comments | Rv1651c, (MTCY06H11.16c), len: 1011 aa. PE_PGRS30, Member of the Mycobacterium tuberculosis PE family, PGRS subfamily of gly-rich proteins (see citations below), similar to many e.g. Q10637|Y03A_MYCTU hypothetical glycine-rich 49.6 kd protein (603 aa), FASTA scores: opt: 1757, E(): 0, (50.8% identity in 714aa overlap). The transcription of this CDS seems to be activated in macrophages (see Ramakrishnan et al., 2000). |
Functional category | Pe/ppe |
Proteomics | Identified by mass spectrometry in M. tuberculosis H37Rv-infected guinea pig lungs at 30 and 90 days (See Kruh et al., 2010). |
Transcriptomics | DNA microarrays show lower level of expression in M. tuberculosis H37Rv than in phoP|Rv0757 mutant (See Walters et al., 2006). |
Mutant | Non-essential gene for in vitro growth of H37Rv in a MtbYM rich medium, by Himar1 transposon mutagenesis (see Minato et al. 2019). Non-essential gene for in vitro growth of H37Rv, by analysis of saturated Himar1 transposon libraries (see DeJesus et al. 2017). Non essential gene by Himar1 transposon mutagenesis in H37Rv strain (see Sassetti et al., 2003). Non-essential gene for in vitro growth of H37Rv, by Himar1 transposon mutagenesis (See Griffin et al., 2011). Check for mutants available at TARGET website |
Coordinates
Type | Start | End | Orientation |
---|---|---|---|
CDS | 1862347 | 1865382 | - |
Genomic sequence
Feature type
Upstream flanking region (bp)
Downstream flanking region (bp)
Update
Protein sequence
>Mycobacterium tuberculosis H37Rv|Rv1651c|PE_PGRS30 MSFLLVEPDLVTAAAANLAGIRSALSEAAAAASTPTTALASAGADEVSAAVSRLFGAYGQQFQALNARAATFHAEFVSLLNGGAAAYTGAEAASVSSMQALLDAVNAPTQTLLGRPLIGNGADGVAGTGSNAGGNGGPGGILYGNGGNGGAGGNGGAAGLIGNGGAGGAGGAGGAGGAGGAGGTGGLLYGNGGAGGNGGSAAAAGGAGGNALLFGNGGNGGSGASGGAAGHAGTIFGNGGNAGAGSGLAGADGGLFGNGGDGGSSTSKAGGAGGNALFGNGGDGGSSTVAAGGAGGNTLVGNGGAGGAGGTSGLTGSGVAGGAGGSVGLWGSGGAGGDGGAATSLLGVGMNAGAGGAGGNAGLLYGNGGAGGAGGNGGDTTVPLFDSGVGGAGGAGGNASLFGNGGTGGVGGKGGTSSDLASATSGAGGAGGAGGVGGLLYGNGGNGGAGGIGGAAINILANAGAGGAGGAAGSSFIGNGGNGGAGGAGGAAALFSSGVGGAGGSGGTALLLGSGGAGGNGGTGGANSGSLFASPGGTGGAGGHGGAGGLIWGNGGAGGNGGNGGTTADGALEGGTGGIGGTGGSAIAFGNGGQGGAGGTGGDHSGGNGIGGKGGASGNGGNAGQVFGDGGTGGTGGAGGAGSGTKAGGTGSDGGHGGNATLIGNGGDGGAGGAGGAGSPAGAPGNGGTGGTGGVLFGQSGSSGPPGAAALAFPSLSSSVPILGPYEDLIANTVANLASIGNTWLADPAPFLQQYLANQFGYGQLTLTALTDATRDFAIGLAGIPPSLQSALQALAAGDVSGAVTDVLGAVVKVFVSGVDASDLSNILLLGPVGDLFPILSIPGAMSQNFTNVVMTVTDTTIAFSIDTTNLTGVMTFGLPLAMTLNAVGSPITTAIAFAESTTAFVSAVQAGNLQAAAAALVGAPANVANGFLNGEARLPLALPTSATGGIPVTVEVPVGGILAPLQPFQATAVIPVIGPVTVTLEGTPAGGIVPALVNYAPTQLAQAIAP
Bibliography
- Ramakrishnan L et al. [2000]. Granuloma-specific expression of Mycobacterium virulence proteins from the glycine-rich PE-PGRS family. Homolog Mutant Regulation
- Brennan MJ et al. [2002]. The PE multigene family: a 'molecular mantra' for mycobacteria. Review
- Sassetti CM et al. [2003]. Genes required for mycobacterial growth defined by high density mutagenesis. Mutant
- Walters SB et al. [2006]. The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Transcriptome
- Kruh NA et al. [2010]. Portrait of a pathogen: the Mycobacterium tuberculosis proteome in vivo. Proteomics
- Griffin JE et al. [2011]. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. Mutant
- DeJesus MA et al. [2017]. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. Mutant
- Minato Y et al. [2019]. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways. Mutant