Gene Rv2668
in Mycobacterium tuberculosis H37Rv
General annotation
Type | CDS |
Function | Unknown |
Product | Possible exported alanine and valine rich protein |
Comments | Rv2668, (MTCY441.37), len: 173 aa. Hypothetical ala-, val-rich protein, possibly exported. Equivalent to AAK47057 from Mycobacterium tuberculosis strain CDC1551 (208 aa) but N-terminal part shorter 35 aa and with few differences. Has potential signal peptide sequence. Predicted to be an outer membrane protein (See Song et al., 2008). |
Functional category | Cell wall and cell processes |
Proteomics | Predicted secreted protein - identified in culture filtrates of M. tuberculosis H37Rv; signal peptide predicted and cleavable signal sequence confirmed experimentally (See Malen et al., 2007). Identified by mass spectrometry in the culture filtrate and whole cell lysates of M. tuberculosis H37Rv but not the membrane protein fraction (See de Souza et al., 2011). |
Transcriptomics | mRNA identified by microarray analysis and up-regulated after 24h of starvation (see citation below). |
Mutant | Non-essential gene for in vitro growth of H37Rv in a MtbYM rich medium, by Himar1 transposon mutagenesis (see Minato et al. 2019). Non-essential gene for in vitro growth of H37Rv, by analysis of saturated Himar1 transposon libraries (see DeJesus et al. 2017). Non essential gene by Himar1 transposon mutagenesis in H37Rv strain (see Sassetti et al., 2003). Non-essential gene for in vitro growth of H37Rv, but essential for in vitro growth on cholesterol; by sequencing of Himar1-based transposon mutagenesis (See Griffin et al., 2011). Check for mutants available at TARGET website |
Coordinates
Type | Start | End | Orientation |
---|---|---|---|
CDS | 2984733 | 2985254 | + |
Genomic sequence
Feature type
Upstream flanking region (bp)
Downstream flanking region (bp)
Update
Protein sequence
>Mycobacterium tuberculosis H37Rv|Rv2668|Rv2668 MRHWLIVLATLLVAAAGVAAANDVPRAWAGDAPIGHIGDTLRVDTGTYVADVTVSSVVPVDPPPGFGYTRSGVPVKSFPDSSVTRADVTVRAVRVPNSFILATNFSFTGVTPFADAYKPRPCDASDWLDAALGNAPQGSIVRGGVYWDAYRDPVSVVVLLDEKTGQHLAQWNL
Bibliography
- Betts JC et al. [2002]. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Transcriptome
- Parish T, Smith DA, Roberts G, Betts J and Stoker NG [2003]. The senX3-regX3 two-component regulatory system of Mycobacterium tuberculosis is required for virulence. Regulation
- Sassetti CM et al. [2003]. Genes required for mycobacterial growth defined by high density mutagenesis. Mutant
- Kendall SL, Withers M, Soffair CN, Moreland NJ, Gurcha S, Sidders B, Frita R, Ten Bokum A, Besra GS, Lott JS and Stoker NG [2007]. A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis. Regulation
- MÃ¥len H et al. [2007]. Comprehensive analysis of exported proteins from Mycobacterium tuberculosis H37Rv. Proteomics
- Song H, Sandie R, Wang Y, Andrade-Navarro MA and Niederweis M [2008]. Identification of outer membrane proteins of Mycobacterium tuberculosis. Localization
- Griffin JE et al. [2011]. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. Mutant
- de Souza GA et al. [2011]. Bacterial proteins with cleaved or uncleaved signal peptides of the general secretory pathway. Proteomics
- DeJesus MA et al. [2017]. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. Mutant
- Minato Y et al. [2019]. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways. Mutant