Gene Rv3029c (etfB)
in Mycobacterium tuberculosis H37Rv
General annotation
Type | CDS |
Function | The electron transfer flavoprotein serves as a specific electron acceptor for other dehydrogenases. It transfers the electrons to the main respiratory chain via ETF-ubiquinone oxidoreductase (ETF dehydrogenase). |
Product | Probable electron transfer flavoprotein (beta-subunit) FixA (beta-ETF) (electron transfer flavoprotein small subunit) (ETFSS) |
Comments | Rv3029c, (MTV012.44c), len: 266 aa. Probable fixA (alternate gene name: etfB), electron transfer flavoprotein (beta-subunit). Equivalent of O33095|ETFB_MYCLE|FixA|MLCB637.03 electron transfer flavoprotein from Mycobacterium leprae (266 aa), FASTA scores: opt: 1603, E(): 7.6e-87, (95.1% identity in 266 aa overlap). Also highly similar to others e.g. Q9K417|SCG22.28c from Streptomyces coelicolor (262 aa), FASTA scores: opt: 860, E(): 2.3e-43, (52.4% identity in 263 aa overlap); O85691|ETFB_MEGEL from Megasphaera elsdenii (270 aa), FASTA scores: opt: 548, E(): 4.2e-25, (35.15% identity in 273 aa overlap); etc. Also highly similar in particular to Q9KHD0|NONH flavoprotein reductase from Streptomyces griseus subsp. griseus (this one is required for macrotetrolide biosynthesis in Streptomyces griseus) (261 aa), FASTA scores: opt: 867, E(): 8.8e-44, (54.0% identity in 263 aa overlap). Belongs to the Etf beta-subunit / FixA family. |
Functional category | Intermediary metabolism and respiration |
Proteomics | The product of this CDS corresponds to spot 3_122 identified in culture supernatant by proteomics at the Max Planck Institute for Infection Biology, Berlin, Germany, and spot FixA identified in short term culture filtrate by proteomics at the Statens Serum Institute (Denmark) (see citations below). Identified in immunodominant fractions of M. tuberculosis H37Rv cytosol using 2D-LPE, 2D-PAGE, and LC-MS or LC-MS/MS (See Covert et al., 2001). Identified in the membrane fraction of M. tuberculosis H37Rv using 1D-SDS-PAGE and uLC-MS/MS (See Gu et al., 2003). Identified in the culture supernatant of M. tuberculosis H37Rv using mass spectrometry (See Mattow et al., 2003). Identified in the cytosol of M. tuberculosis H37Rv using 2DLC/MS (See Mawuenyega et al., 2005). Identified by mass spectrometry in Triton X-114 extracts of M. tuberculosis H37Rv (See Malen et al., 2010). Identified by mass spectrometry in the membrane protein fraction and whole cell lysates of M. tuberculosis H37Rv but not the culture filtrate (See de Souza et al., 2011). Translational start site supported by proteomics data (See de Souza et al., 2011) (See Kelkar et al., 2011). |
Mutant | Non-essential gene for in vitro growth of H37Rv in a MtbYM rich medium, by Himar1 transposon mutagenesis (see Minato et al. 2019). Disruption of this gene results in growth defect of H37Rv in vitro, by analysis of saturated Himar1 transposon libraries (see DeJesus et al. 2017). Essential gene by Himar1 transposon mutagenesis in H37Rv strain (see Sassetti et al., 2003). Essential gene for in vitro growth of H37Rv, by Himar1 transposon mutagenesis (See Griffin et al., 2011). Check for mutants available at TARGET website |
Coordinates
Type | Start | End | Orientation |
---|---|---|---|
CDS | 3388070 | 3388870 | - |
Genomic sequence
Feature type
Upstream flanking region (bp)
Downstream flanking region (bp)
Update
Protein sequence
>Mycobacterium tuberculosis H37Rv|Rv3029c|fixA MTNIVVLIKQVPDTWSERKLTDGDFTLDREAADAVLDEINERAVEEALQIREKEAADGIEGSVTVLTAGPERATEAIRKALSMGADKAVHLKDDGMHGSDVIQTGWALARALGTIEGTELVIAGNESTDGVGGAVPAIIAEYLGLPQLTHLRKVSIEGGKITGERETDEGVFTLEATLPAVISVNEKINEPRFPSFKGIMAAKKKEVTVLTLAEIGVESDEVGLANAGSTVLASTPKPAKTAGEKVTDEGEGGNQIVQYLVAQKII
Bibliography
- Jungblut PR, Schaible UE, Mollenkopf HJ, Zimny-Arndt U, Raupach B, Mattow J, Halada P, Lamer S, Hagens K and Kaufmann SH [1999]. Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens. Proteomics
- Mollenkopf HJ et al. [1999]. A dynamic two-dimensional polyacrylamide gel electrophoresis database: the mycobacterial proteome via Internet. Proteomics
- Rosenkrands I, Weldingh K, Jacobsen S, Hansen CV, Florio W, Gianetri I and Andersen P [2000]. Mapping and identification of Mycobacterium tuberculosis proteins by two-dimensional gel electrophoresis, microsequencing and immunodetection. Proteomics
- Rosenkrands I et al. [2000]. Towards the proteome of Mycobacterium tuberculosis. Proteomics
- Covert BA et al. [2001]. The application of proteomics in defining the T cell antigens of Mycobacterium tuberculosis. Proteomics
- Sassetti CM et al. [2003]. Genes required for mycobacterial growth defined by high density mutagenesis. Mutant
- Dahl JL et al. [2003]. The role of RelMtb-mediated adaptation to stationary phase in long-term persistence of Mycobacterium tuberculosis in mice. Regulon
- Mattow J, Schaible UE, Schmidt F, Hagens K, Siejak F, Brestrich G, Haeselbarth G, Muller EC, Jungblut PR and Kaufmann SH [2003]. Comparative proteome analysis of culture supernatant proteins from virulent Mycobacterium tuberculosis H37Rv and attenuated M. bovis BCG Copenhagen. Proteomics
- Gu S et al. [2003]. Comprehensive proteomic profiling of the membrane constituents of a Mycobacterium tuberculosis strain. Proteomics
- Mawuenyega KG et al. [2005]. Mycobacterium tuberculosis functional network analysis by global subcellular protein profiling. Proteomics
- MÃ¥len H et al. [2010]. Definition of novel cell envelope associated proteins in Triton X-114 extracts of Mycobacterium tuberculosis H37Rv. Proteomics
- de Souza GA et al. [2011]. Bacterial proteins with cleaved or uncleaved signal peptides of the general secretory pathway. Proteomics
- Kelkar DS et al. [2011]. Proteogenomic analysis of Mycobacterium tuberculosis by high resolution mass spectrometry. Proteomics Sequence
- Griffin JE et al. [2011]. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. Mutant
- de Souza GA et al. [2011]. Proteogenomic analysis of polymorphisms and gene annotation divergences in prokaryotes using a clustered mass spectrometry-friendly database. Proteomics Sequence
- DeJesus MA et al. [2017]. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. Mutant
- Minato Y et al. [2019]. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways. Mutant