Gene Rv3347c
in Mycobacterium tuberculosis H37Rv
General annotation
Type | CDS |
Function | Function unknown |
Product | PPE family protein PPE55 |
Comments | Rv3347c, (MTV004.03c), len: 3157 aa. PPE55, Member of the Mycobacterium tuberculosis PPE family, Gly-, Ala-, Asn-rich protein. Similar to many from Mycobacterium tuberculosis strains H37Rv and CDC1551, e.g. O50379|Rv3350c|MTV004.07c (3716 aa), FASTA scores: opt: 6497, E(): 0, (61.65% identity in 3756 aa overlap); and other upstream ORFs MTV004_5, MTY13E10_15, MTCY28_16, MTCY63_9, MTY13E10_17, MTCY180_1; etc. Predicted possible vaccine candidate (See Zvi et al., 2008). |
Functional category | Pe/ppe |
Proteomics | Identified by mass spectrometry in M. tuberculosis H37Rv-infected guinea pig lungs at 30 and 90 days (See Kruh et al., 2010). |
Mutant | Non-essential gene for in vitro growth of H37Rv in a MtbYM rich medium, by Himar1 transposon mutagenesis (see Minato et al. 2019). Disruption of this gene provides a growth advantage for in vitro growth of H37Rv, by analysis of saturated Himar1 transposon libraries (see DeJesus et al. 2017). Non essential gene by Himar1 transposon mutagenesis in CDC1551 strain (see Lamichhane et al., 2003). Non-essential gene for in vitro growth of H37Rv, by Himar1 transposon mutagenesis (See Griffin et al., 2011). Check for mutants available at TARGET website |
Coordinates
Type | Start | End | Orientation |
---|---|---|---|
CDS | 3743711 | 3753184 | - |
Genomic sequence
Feature type
Upstream flanking region (bp)
Downstream flanking region (bp)
Update
Protein sequence
>Mycobacterium tuberculosis H37Rv|Rv3347c|PPE55 LNFPVLPPEINSVLMYSGAGSSPLLAAAAAWDGLAEELGSAAVSFGQVTSGLTAGVWQGAAAAAMAAAAAPYAGWLGSVAAQAVAVAGQARAAVAAFEAALAATVDPAAVAVNRMAMRALAMSNLLGQNAAAIAAVEAEYELMWAADVAAMAGYHSGASAAAAALPAFSPPAQALGGGVGAFLNALFAGPAKMLRLNAGLGNVGNYNVGLGNVGIFNLGAANVGAQNLGAANAGSGNFGFGNIGNANFGFGNSGLGLPPGMGNIGLGNAGSSNYGLANLGVGNIGFANTGSNNIGIGLTGDNLTGIGGLNSGTGNLGLFNSGTGNIGFFNSGTGNFGVFNSGSYNTGVGNAGTASTGLFNVGGFNTGVANVGSYNTGSFNAGNTNTGGFNPGNVNTGWLNTGNTNTGIANSGNVNTGAFISGNFSNGVLWRGDYEGLWGLSGGSTIPAIPIGLELNGGVGPITVLPIQILPTIPLNIHQTFSLGPLVVPDIVIPAFGGGTAIPISVGPITISPITLFPAQNFNTTFPVGPFFGLGVVNISGIEIKDLAGNVTLQLGNLNIDTRINQSFPVTVNWSTPAVTIFPNGISIPNNPLALLASASIGTLGFTIPGFTIPAAPLPLTIDIDGQIDGFSTPPITIDRIPLNLGASVTVGPILINGVNIPATPGFGNTTTAPSSGFFNSGDGGVSGFGNFGAGSSGWWNQAQTEVAGAGSGFANFGSLGSGVLNFGSGVSGLYNTGGLPPGTPAVVSGIGNVGEQLSGLSSAGTALNQSLIINLGLADVGSVNVGFGNVGDFNLGAANIGDLNVGLGNVGGGNVGFGNIGDANFGLGNAGLAAGLAGVGNIGLGNAGSGNVGFGNMGVGNIGFGNTGTNNLGIGLTGDNQTGIGGLNSGAGNIGLFNSGTGNVGLFNSGTGNFGLFNSGSFNTGIGNGGTGSTGLFNAGNFNTGVANPGSYNTGSFNVGDTNTGGFNPGSINTGWFNTGNANTGVANSGNVDTGALMSGNFSNGILWRGNFEGLFGLNVGITIPEFPIHWTSTGGIGPIIIPDTTILPPIHLGLTGQANYGFAVPDIPIPAIHIDFDGAADAGFTAPATTLLSALGITGQFRFGPITVSNVQLNPFNVNLKLQFLHDAFPNEFPDPTISVQIQVAIPLTSATLGGLALPLQQTIDAIELPAISFSQSIPIDIPPIDIPASTINGISMSEVVPIDVSVDIPAVTITGTRIDPIPLNFDVLSSAGPINISIIDIPALPGFGNSTELPSSGFFNTGGGGGSGIANFGAGVSGLLNQASSPMVGTLSGLGNAGSLASGVLNSGVDISGMFNVSTLGSAPAVISGFGNLGNHVSGVSIDGLLAMLTSGGSGGSGQPSIIDAAIAELRHLNPLNIVNLGNVGSYNLGFANVGDVNLGAGNLGNLNLGGGNLGGQNLGLGNLGDGNVGFGNLGHGNVGFGNSGLGALPGIGNIGLGNAGSNNVGFGNMGLGNIGFGNTGTNNLGIGLTGDNQTGFGGLNSGAGNLGLFNSGTGNIGFFNTGTGNWGLFNSGSYNTGIGNSGTGSTGLFNAGSFNTGLANAGSYNTGSLNAGNTNTGGFNPGNVNTGWFNAGHTNTGGFNTGNVNTGAFNSGSFNNGALWTGDHHGLVGFSYSIEITGSTLVDINETLNLGPVHIDQIDIPGMSLFDIHELVNIGPFRIEPIDVPAVVLDIHETMVIPPIVFLPSMTIGGQTYTIPLDTPPAPAPPPFRLPLLFVNALGDNWIVGASNSTGMSGGFVTAPTQGILIHTGPSSATTGSLALTLPTVTIPTITTSPIPLKIDVSGGLPAFTLFPGGLNIPQNAIPLTIDASGVLDPITIFPGGFTIDPLPLSLALNISVPDSSVPIIIVPPTPGFGNATATPSSGFFNSGAGGVSGFGNFGAGSSGWWNQAHAALAGAGSGVLNVGTLNSGVLNVGSGISGLYNTAIVGLGTPALVSGAGNVGQQLSGVLAAGTALTQSPIINLGLADVGNYNLGLGNVGDFNLGAANLGDLNLGLGNIGNANVGFGNIGHGNVGFGNSGLGAALGIGNIGLGNAGSTNVGLANMGVGNIGFANTGTNNLGIGLTGDNQTGIGGLNSGAGNIGLFNSGTGNIGFFNSGTGNWGLFNSGSFNTGIGNSGTGSTGLFNAGGFTTGLANAGSYNTGSFNVGDTNTGGFNPGSINTGWFNTGNANTGIANSGNVDTGALMSGNFSNGILWRGNYEGLFSYSYSLDVPRITILDAHFTGAFGPVVVPPIPVLAINAHLTGNAAMGAFTIPQIDIPALNPNVTGSVGFGPIAVPSVTIPALTAARAVLDMAASVGATSEIEPFIVWTSSGAIGPTWYSVGRIYNAGDLFVGGNIISGIPTLSTTGPVHAVFNAASQAFNTPALNIHQIPLGFQVPGSIDAITLFPGGLTFPANSLLNLDVFVGTPGATIPAITFPEIPANADGELYVIAGDIPLINIPPTPGIGNTTTVPSSGFFNTGAGGGSGFGNFGANMSGWWNQAHTALAGAGSGIANVGTLHSGVLNLGSGLSGIYNTSTLPLGTPALVSGLGNVGDHLSGLLASNVGQNPITIVNIGLANVGNGNVGLGNIGNLNLGAANIGDVNLGFGNIGDVNLGFGNIGGGNVGFGNIGDANFGFGNSGLAAGLAGMGNIGLGNAGSGNVGWANMGLGNIGFGNTGTNNLGIGLTGDNQSGIGGLNSGTGNIGLFNSGTGNIGFFNSGTANFGLFNSGSYNTGIGNSGVASTGLVNAGGFNTGVANAGSYNTGSFNAGDTNTGGFNPGSTNTGWFNTGNANTGVANAGNVNTGALITGNFSNGILWRGNYEGLAGFSFGYPIPLFPAVGADVTGDIGPATIIPPIHIPSIPLGFAAIGHIGPISIPNIAIPSIHLGIDPTFDVGPITVDPITLTIPGLSLDAAVSEIRMTSGSSSGFKVRPSFSFFAVGPDGMPGGEVSILQPFTVAPINLNPTTLHFPGFTIPTGPIHIGLPLSLTIPGFTIPGGTLIPQLPLGLGLSGGTPPFDLPTVVIDRIPVELHASTTIGPVSLPIFGFGGAPGFGNDTTAPSSGFFNTGGGGGSGFSNSGSGMSGVLNAISDPLLGSASGFANFGTQLSGILNRGAGISGVYNTGTLGLVTSAFVSGFMNVGQQLSGLLFAGTGP
Bibliography
- Lamichhane G et al. [2003]. A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis. Mutant
- Zvi A et al. [2008]. Whole genome identification of Mycobacterium tuberculosis vaccine candidates by comprehensive data mining and bioinformatic analyses. Immunology
- Kruh NA et al. [2010]. Portrait of a pathogen: the Mycobacterium tuberculosis proteome in vivo. Proteomics
- Griffin JE et al. [2011]. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. Mutant
- DeJesus MA et al. [2017]. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. Mutant
- Minato Y et al. [2019]. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways. Mutant