Gene Rv3537
in Mycobacterium tuberculosis H37Rv
General annotation
Type | CDS |
Function | Function unknown; probably involved in cellular metabolism. Predicted to be involved in lipid catabolism. |
Product | Probable dehydrogenase |
Comments | Rv3537, (MTCY03C7.19c), len: 563 aa. Probable kstD, dehydrogenase, similar to many dehydrogenases or hypothetical proteins e.g. Q9I1M6|PA2243 hypothetical protein from Pseudomonas aeruginosa (577 aa), FASTA scores: opt: 984, E(): 1.2e-48, (34.75% identity in 573 aa overlap); Q06401|3O1D_COMTE 3-oxosteroid 1-dehydrogenase from Comamonas testosteroni (Pseudomonas testosteroni) (573 aa), FASTA scores: opt: 955, E(): 5.5e-47, (33.05% identity in 590 aa overlap); Q9RA02|KSTD1 3-ketosteroid dehydrogenase from Rhodococcus erythropolis (510 aa), FASTA scores: opt: 631, E(): 1.4e-28, (39.15% identity in 557 aa overlap); P77815|KSDD 3-ketosteroid-1-dehydrogenase from Nocardioides simplex (Arthrobacter simplex) (515 aa), FASTA scores: opt: 469, E(): 2.4e-19, (35.45% identity in 564 aa overlap); etc. |
Functional category | Intermediary metabolism and respiration |
Proteomics | Identified in the cell membrane fraction of M. tuberculosis H37Rv using 2DLC/MS (See Mawuenyega et al., 2005). Identified by mass spectrometry in M. tuberculosis H37Rv-infected guinea pig lungs at 90 days but not 30 days (See Kruh et al., 2010). |
Mutant | Non-essential gene for in vitro growth of H37Rv in a MtbYM rich medium, by Himar1 transposon mutagenesis (see Minato et al. 2019). Non-essential gene for in vitro growth of H37Rv, by analysis of saturated Himar1 transposon libraries (see DeJesus et al. 2017). Required for survival in primary murine macrophages, by transposon site hybridization (TraSH) in H37Rv (See Rengarajan et al., 2005). Essential gene for in vitro growth of H37Rv on cholesterol, by sequencing of Himar1-based transposon mutagenesis (See Griffin et al., 2011). Check for mutants available at TARGET website |
Coordinates
Type | Start | End | Orientation |
---|---|---|---|
CDS | 3975369 | 3977060 | + |
Genomic sequence
Feature type
Upstream flanking region (bp)
Downstream flanking region (bp)
Update
Protein sequence
>Mycobacterium tuberculosis H37Rv|Rv3537|kstD MTVQEFDVVVVGSGAAGMVAALVAAHRGLSTVVVEKAPHYGGSTARSGGGVWIPNNEVLKRRGVRDTPEAARTYLHGIVGEIVEPERIDAYLDRGPEMLSFVLKHTPLKMCWVPGYSDYYPEAPGGRPGGRSIEPKPFNARKLGADMAGLEPAYGKVPLNVVVMQQDYVRLNQLKRHPRGVLRSMKVGARTMWAKATGKNLVGMGRALIGPLRIGLQRAGVPVELNTAFTDLFVENGVVSGVYVRDSHEAESAEPQLIRARRGVILACGGFEHNEQMRIKYQRAPITTEWTVGASANTGDGILAAEKLGAALDLMDDAWWGPTVPLVGKPWFALSERNSPGSIIVNMSGKRFMNESMPYVEACHHMYGGEHGQGPGPGENIPAWLVFDQRYRDRYIFAGLQPGQRIPSRWLDSGVIVQADTLAELAGKAGLPADELTATVQRFNAFARSGVDEDYHRGESAYDRYYGDPSNKPNPNLGEVGHPPYYGAKMVPGDLGTKGGIRTDVNGRALRDDGSIIDGLYAAGNVSAPVMGHTYPGPGGTIGPAMTFGYLAALHIADQAGKR
Bibliography
- Mawuenyega KG et al. [2005]. Mycobacterium tuberculosis functional network analysis by global subcellular protein profiling. Proteomics
- Rengarajan J et al. [2005]. Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Mutant
- Kendall SL, Withers M, Soffair CN, Moreland NJ, Gurcha S, Sidders B, Frita R, Ten Bokum A, Besra GS, Lott JS and Stoker NG [2007]. A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis. Regulation
- Van der Geize R et al. [2007]. A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Function
- Kruh NA et al. [2010]. Portrait of a pathogen: the Mycobacterium tuberculosis proteome in vivo. Proteomics
- Griffin JE et al. [2011]. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. Mutant
- DeJesus MA et al. [2017]. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. Mutant
- Minato Y et al. [2019]. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways. Mutant