Gene Rv0223c
in Mycobacterium tuberculosis H37Rv
General annotation
Type | CDS |
Function | Thought to oxidize a wide variety of aliphatic and aromatic aldehydes. |
Product | Probable aldehyde dehydrogenase |
Comments | Rv0223c, (MTCY08D5.18), len: 487 aa. Probable aldehyde dehydrogenase, similar to others e.g. A75608|6460525|AAF12231.1|AE001862_57 aldehyde dehydrogenase from Deinococcus radiodurans strain R1 (495 aa); Q47943 L-sorbosone dehydrogenase NAD(P) dependent from Gluconobacter oxydans (498 aa), FASTA scores: opt: 1157, E (): 0, (42.1% identity in 482 aa overlap); etc. Also similar to Rv0768, Rv2858c, etc from Mycobacterium tuberculosis. Contains PS00687 Aldehyde dehydrogenases glutamic acid active site; and PS00070 Aldehyde dehydrogenases cysteine active site. Belongs to the aldehyde dehydrogenases family. |
Functional category | Intermediary metabolism and respiration |
Proteomics | Identified in the cell membrane fraction of M. tuberculosis H37Rv using 2DLC/MS (See Mawuenyega et al., 2005). Identified by mass spectrometry in the membrane protein fraction and whole cell lysates of M. tuberculosis H37Rv but not the culture filtrate (See de Souza et al., 2011). Translational start site supported by proteomics data (See de Souza et al., 2011) (See Kelkar et al., 2011). |
Mutant | Non-essential gene for in vitro growth of H37Rv in a MtbYM rich medium, by Himar1 transposon mutagenesis (see Minato et al. 2019). Non-essential gene for in vitro growth of H37Rv, by analysis of saturated Himar1 transposon libraries (see DeJesus et al. 2017). Non essential gene by Himar1 transposon mutagenesis in CDC1551 strain (see Lamichhane et al., 2003). Check for mutants available at TARGET website |
Coordinates
Type | Start | End | Orientation |
---|---|---|---|
CDS | 266301 | 267764 | - |
Genomic sequence
Feature type
Upstream flanking region (bp)
Downstream flanking region (bp)
Update
Protein sequence
>Mycobacterium tuberculosis H37Rv|Rv0223c|Rv0223c MSDSATEYDKLFIGGKWTKPSTSDVIEVRCPATGEYVGKVPMAAAADVDAAVAAARAAFDNGPWPSTPPHERAAVIAAAVKMLAERKDLFTKLLAAETGQPPTIIETMHWMGSMGAMNYFAGAADKVTWTETRTGSYGQSIVSREPVGVVGAIVAWNVPLFLAVNKIAPALLAGCTIVLKPAAETPLTANALAEVFAEVGLPEGVLSVVPGGIETGQALTSNPDIDMFTFTGSSAVGREVGRRAAEMLKPCTLELGGKSAAIILEDVDLAAAIPMMVFSGVMNAGQGCVNQTRILAPRSRYDEIVAAVTNFVTALPVGPPSDPAAQIGPLISEKQRTRVEGYIAKGIEEGARLVCGGGRPEGLDNGFFIQPTVFADVDNKMTIAQEEIFGPVLAIIPYDTEEDAIAIANDSVYGLAGSVWTTDVPKGIKISQQIRTGTYGINWYAFDPGSPFGGYKNSGIGRENGPEGVEHFTQQKSVLLPMGYTVA
Bibliography
- Lamichhane G et al. [2003]. A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis. Mutant
- Mawuenyega KG et al. [2005]. Mycobacterium tuberculosis functional network analysis by global subcellular protein profiling. Proteomics
- Kendall SL, Withers M, Soffair CN, Moreland NJ, Gurcha S, Sidders B, Frita R, Ten Bokum A, Besra GS, Lott JS and Stoker NG [2007]. A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis. Regulation
- de Souza GA et al. [2011]. Bacterial proteins with cleaved or uncleaved signal peptides of the general secretory pathway. Proteomics
- Kelkar DS et al. [2011]. Proteogenomic analysis of Mycobacterium tuberculosis by high resolution mass spectrometry. Proteomics Sequence
- de Souza GA et al. [2011]. Proteogenomic analysis of polymorphisms and gene annotation divergences in prokaryotes using a clustered mass spectrometry-friendly database. Proteomics Sequence
- DeJesus MA et al. [2017]. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. Mutant
- Minato Y et al. [2019]. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways. Mutant