Gene Rv0676c
in Mycobacterium tuberculosis H37Rv
General annotation
Type | CDS |
Function | Unknown. Thought to be involved in fatty acid transport. |
Product | Probable conserved transmembrane transport protein MmpL5 |
Comments | Rv0676c, (MTV040.04c), len: 964 aa. Probable mmpL5, conserved transmembrane transport protein (see Tekaia et al., 1999), member of RND superfamily, highly similar to other Mycobacterial proteins e.g. MTV037_14, MTCY98_8, MTCY20G9_34, MTCY4D9_15, MTCY48_8, MTCY19G5_6, MTV005_19, etc. Also similar to other Mycobacterial mmpl proteins e.g. P54881|MML4_MYCLE putative membrane protein MMPL4 from Mycobacterium leprae (959 aa), FASTA scores: opt: 3991, E(): 0, (62.8% identity in 933 aa overlap); etc. Belongs to the MmpL family. |
Functional category | Cell wall and cell processes |
Proteomics | Identified in the cytosol of M. tuberculosis H37Rv using 2DLC/MS (See Mawuenyega et al., 2005). Identified in the membrane fraction of M. tuberculosis H37Rv using nanoLC-MS/MS; predicted integral membrane protein (See Xiong et al., 2005). Identified by mass spectrometry in Triton X-114 extracts of M. tuberculosis H37Rv (See Malen et al., 2010). Identified by mass spectrometry in M. tuberculosis H37Rv-infected guinea pig lungs at 90 days but not 30 days (See Kruh et al., 2010). Identified by mass spectrometry in the membrane protein fraction and whole cell lysates of M. tuberculosis H37Rv but not the culture filtrate (See de Souza et al., 2011). Translational start site supported by proteomics data (See Kelkar et al., 2011). |
Transcriptomics | mRNA identified by microarray analysis and down-regulated after 4h, 24h and 96h of starvation (see Betts et al., 2002). DNA microarrays and qRT-PCR show higher expression of Rv0676c, Rv0677c and Rv0678 in azole-resistant H37Rv mutant than in wild-type (See Milano et al., 2009). |
Mutant | Non-essential gene for in vitro growth of H37Rv in a MtbYM rich medium, by Himar1 transposon mutagenesis (see Minato et al. 2019). Non-essential gene for in vitro growth of H37Rv, by analysis of saturated Himar1 transposon libraries (see DeJesus et al. 2017). Non essential gene by Himar1 transposon mutagenesis in H37Rv and CDC1551 strains (see Sassetti et al., 2003 and Lamichhane et al., 2003). Non-essential gene for in vitro growth of H37Rv, by Himar1 transposon mutagenesis (See Griffin et al., 2011). Check for mutants available at TARGET website |
Coordinates
Type | Start | End | Orientation |
---|---|---|---|
CDS | 775586 | 778480 | - |
Genomic sequence
Feature type
Upstream flanking region (bp)
Downstream flanking region (bp)
Update
Protein sequence
>Mycobacterium tuberculosis H37Rv|Rv0676c|mmpL5 MIVQRTAAPTGSVPPDRHAARPFIPRMIRTFAVPIILGWLVTIAVLNVTVPQLETVGQIQAVSMSPDAAPSMISMKHIGKVFEEGDSDSAAMIVLEGQRPLGDAAHAFYDQMIGRLQADTTHVQSLQDFWGDPLTATGAQSSDGKAAYVQVKLAGNQGESLANESVEAVKTIVERLAPPPGVKVYVTGSAALVADQQQAGDRSLQVIEAVTFTVIIVMLLLVYRSIITSAIMLTMVVLGLLATRGGVAFLGFHRIIGLSTFATNLLVVLAIAAATDYAIFLIGRYQEARGLGQDRESAYYTMFGGTAHVVLGSGLTIAGATFCLSFTRLPYFQTLGVPLAIGMVIVVAAALTLGPAIIAVTSRFGKLLEPKRMARVRGWRKVGAAIVRWPGPILVGAVALALVGLLTLPGYRTNYNDRNYLPADLPANEGYAAAERHFSQARMNPEVLMVESDHDMRNSADFLVINKIAKAIFAVEGISRVQAITRPDGKPIEHTSIPFLISMQGTSQKLTEKYNQDLTARMLEQVNDIQSNIDQMERMHSLTQQMADVTHEMVIQMTGMVVDVEELRNHIADFDDFFRPIRSYFYWEKHCYDIPVCWSLRSVFDTLDGIDVMTEDINNLLPLMQRLDTLMPQLTAMMPEMIQTMKSMKAQMLSMHSTQEGLQDQMAAMQEDSAAMGEAFDASRNDDSFYLPPEVFDNPDFQRGLEQFLSPDGHAVRFIISHEGDPMSQAGIARIAKIKTAAKEAIKGTPLEGSAIYLGGTAAMFKDLSDGNTYDLMIAGISALCLIFIIMLITTRSVVAAAVIVGTVVLSLGASFGLSVLIWQHILGIELHWLVLAMAVIILLAVGADYNLLLVARLKEEIHAGINTGIIRAMGGSGSVVTAAGLVFAFTMMSFAVSELTVMAQVGTTIGMGLLFDTLIVRSFMTPSIAALLGKWFWWPQVVRQRPIPQPWPSPASARTFALV
Bibliography
- Tekaia F et al. [1999]. Analysis of the proteome of Mycobacterium tuberculosis in silico. Secondary Function
- Betts JC et al. [2002]. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Transcriptome
- Sassetti CM et al. [2003]. Genes required for mycobacterial growth defined by high density mutagenesis. Mutant
- Lamichhane G et al. [2003]. A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis. Mutant
- Xiong Y, Chalmers MJ, Gao FP, Cross TA and Marshall AG [2005]. Identification of Mycobacterium tuberculosis H37Rv integral membrane proteins by one-dimensional gel electrophoresis and liquid chromatography electrospray ionization tandem mass spectrometry. Proteomics
- Mawuenyega KG et al. [2005]. Mycobacterium tuberculosis functional network analysis by global subcellular protein profiling. Proteomics
- Milano A et al. [2009]. Azole resistance in Mycobacterium tuberculosis is mediated by the MmpS5-MmpL5 efflux system. Transcriptome
- MÃ¥len H et al. [2010]. Definition of novel cell envelope associated proteins in Triton X-114 extracts of Mycobacterium tuberculosis H37Rv. Proteomics
- Kruh NA et al. [2010]. Portrait of a pathogen: the Mycobacterium tuberculosis proteome in vivo. Proteomics
- de Souza GA et al. [2011]. Bacterial proteins with cleaved or uncleaved signal peptides of the general secretory pathway. Proteomics
- Kelkar DS et al. [2011]. Proteogenomic analysis of Mycobacterium tuberculosis by high resolution mass spectrometry. Proteomics Sequence
- Griffin JE et al. [2011]. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. Mutant
- DeJesus MA et al. [2017]. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. Mutant
- Minato Y et al. [2019]. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways. Mutant