Gene Rv0685
in Mycobacterium tuberculosis H37Rv
General annotation
Type | CDS |
Function | This protein promotes the GTP-dependent binding of aminoacyl-tRNA to the A-site of ribosomes during protein biosynthesis. |
Product | Probable iron-regulated elongation factor TU Tuf (EF-TU) |
Comments | Rv0685, (MTCY210.02), len: 396 aa. Probable tuf, iron-regulated elongation factor EF-Tu, equivalent to JC2262 translation elongation factor Tu from Mycobacterium leprae (396 aa). Also highly similar to others e.g. P42439|EFTU_CORGL elongation factor TU (EF-TU) from Corynebacterium glutamicum (396 aa); etc. Contains PS00017 ATP/GTP-binding site motif A, and PS00301 GTP-binding elongation factors signature. Belongs to the GTP-binding elongation factor family, EF-TU/EF-1A subfamily. Predicted possible vaccine candidate (See Zvi et al., 2008). |
Functional category | Information pathways |
Proteomics | The product of this CDS corresponds to spots 1_367, 1_362, 1_171 and 1_349 identified in culture supernatant by proteomics at the Max Planck Institute for Infection Biology, Berlin, Germany, spot 0685 (or EF-tu) identified in cell wall by proteomics at the Statens Serum Institute (Denmark), and spot identified in the University of California (USA) (see citations below). Note that in Mycobacterium bovis BCG, proteome analysis by 2D-electrophoresis and MS identified this homolog which showed increased expression inside macrophages (see citation below). Identified in carbonate extracts of M. tuberculosis H37Rv membranes using 2DGE and MALDI-MS (See Sinha et al., 2002). Identified in the membrane fraction of M. tuberculosis H37Rv using 1D-SDS-PAGE and uLC-MS/MS (See Gu et al., 2003). Identified in the culture supernatant of M. tuberculosis H37Rv using mass spectrometry (See Mattow et al., 2003). Identified in the cytosol, cell wall, and cell membrane fractions of M. tuberculosis H37Rv using 2DLC/MS (See Mawuenyega et al., 2005). Identified in the membrane fraction of M. tuberculosis H37Rv using nanoLC-MS/MS (See Xiong et al., 2005). Identified in the detergent phase of Triton X-114 extracts of M. tuberculosis H37Rv membranes using 1-DGE and MALDI-TOF-MS (See Sinha et al., 2005). Identified by mass spectrometry in Triton X-114 extracts of M. tuberculosis H37Rv (See Malen et al., 2010). Identified by mass spectrometry in the membrane protein fraction and whole cell lysates of M. tuberculosis H37Rv but not the culture filtrate (See de Souza et al., 2011). |
Transcriptomics | DNA microarrays show lower level of expression in M. tuberculosis H37Rv during Mg2+ starvation (See Walters et al., 2006). |
Mutant | Essential gene for in vitro growth of H37Rv in a MtbYM rich medium, by Himar1 transposon mutagenesis (see Minato et al. 2019). Essential gene for in vitro growth of H37Rv, by analysis of saturated Himar1 transposon libraries (see DeJesus et al. 2017). Essential gene by Himar1 transposon mutagenesis in H37Rv strain (see Sassetti et al., 2003). Essential gene for in vitro growth of H37Rv, by Himar1 transposon mutagenesis (See Griffin et al., 2011). Check for mutants available at TARGET website |
Coordinates
Type | Start | End | Orientation |
---|---|---|---|
CDS | 784821 | 786011 | + |
Genomic sequence
Feature type
Upstream flanking region (bp)
Downstream flanking region (bp)
Update
Protein sequence
>Mycobacterium tuberculosis H37Rv|Rv0685|tuf VAKAKFQRTKPHVNIGTIGHVDHGKTTLTAAITKVLHDKFPDLNETKAFDQIDNAPEERQRGITINIAHVEYQTDKRHYAHVDAPGHADYIKNMITGAAQMDGAILVVAATDGPMPQTREHVLLARQVGVPYILVALNKADAVDDEELLELVEMEVRELLAAQEFDEDAPVVRVSALKALEGDAKWVASVEELMNAVDESIPDPVRETDKPFLMPVEDVFTITGRGTVVTGRVERGVINVNEEVEIVGIRPSTTKTTVTGVEMFRKLLDQGQAGDNVGLLLRGVKREDVERGQVVTKPGTTTPHTEFEGQVYILSKDEGGRHTPFFNNYRPQFYFRTTDVTGVVTLPEGTEMVMPGDNTNISVKLIQPVAMDEGLRFAIREGGRTVGAGRVTKIIK
Bibliography
- Mollenkopf HJ et al. [1999]. A dynamic two-dimensional polyacrylamide gel electrophoresis database: the mycobacterial proteome via Internet. Proteomics
- Wong DK, Lee BY, Horwitz MA and Gibson BW [1999]. Identification of fur, aconitase, and other proteins expressed by Mycobacterium tuberculosis under conditions of low and high concentrations of iron by combined two-dimensional gel electrophoresis and mass spectrometry. Proteomics Regulation
- Jungblut PR, Schaible UE, Mollenkopf HJ, Zimny-Arndt U, Raupach B, Mattow J, Halada P, Lamer S, Hagens K and Kaufmann SH [1999]. Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens. Proteomics
- Rosenkrands I, Weldingh K, Jacobsen S, Hansen CV, Florio W, Gianetri I and Andersen P [2000]. Mapping and identification of Mycobacterium tuberculosis proteins by two-dimensional gel electrophoresis, microsequencing and immunodetection. Proteomics
- Rosenkrands I et al. [2000]. Towards the proteome of Mycobacterium tuberculosis. Proteomics
- Monahan IM et al. [2001]. Differential expression of mycobacterial proteins following phagocytosis by macrophages. Homolog Proteomics
- Sinha S et al. [2002]. Proteome analysis of the plasma membrane of Mycobacterium tuberculosis. Proteomics
- Sassetti CM et al. [2003]. Genes required for mycobacterial growth defined by high density mutagenesis. Mutant
- Gu S et al. [2003]. Comprehensive proteomic profiling of the membrane constituents of a Mycobacterium tuberculosis strain. Proteomics
- Dahl JL et al. [2003]. The role of RelMtb-mediated adaptation to stationary phase in long-term persistence of Mycobacterium tuberculosis in mice. Regulon
- Mattow J, Schaible UE, Schmidt F, Hagens K, Siejak F, Brestrich G, Haeselbarth G, Muller EC, Jungblut PR and Kaufmann SH [2003]. Comparative proteome analysis of culture supernatant proteins from virulent Mycobacterium tuberculosis H37Rv and attenuated M. bovis BCG Copenhagen. Proteomics
- Sinha S, Kosalai K, Arora S, Namane A, Sharma P, Gaikwad AN, Brodin P and Cole ST [2005]. Immunogenic membrane-associated proteins of Mycobacterium tuberculosis revealed by proteomics. Proteomics
- Xiong Y, Chalmers MJ, Gao FP, Cross TA and Marshall AG [2005]. Identification of Mycobacterium tuberculosis H37Rv integral membrane proteins by one-dimensional gel electrophoresis and liquid chromatography electrospray ionization tandem mass spectrometry. Proteomics
- Mawuenyega KG et al. [2005]. Mycobacterium tuberculosis functional network analysis by global subcellular protein profiling. Proteomics
- Walters SB et al. [2006]. The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Transcriptome
- Zvi A et al. [2008]. Whole genome identification of Mycobacterium tuberculosis vaccine candidates by comprehensive data mining and bioinformatic analyses. Immunology
- MÃ¥len H et al. [2010]. Definition of novel cell envelope associated proteins in Triton X-114 extracts of Mycobacterium tuberculosis H37Rv. Proteomics
- Griffin JE et al. [2011]. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. Mutant
- de Souza GA et al. [2011]. Bacterial proteins with cleaved or uncleaved signal peptides of the general secretory pathway. Proteomics
- DeJesus MA et al. [2017]. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. Mutant
- Minato Y et al. [2019]. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways. Mutant