Gene Rv1427c
in Mycobacterium tuberculosis H37Rv
General annotation
Type | CDS |
Function | Function unknown, but supposed involvement in lipid degradation. |
Product | Possible long-chain-fatty-acid--CoA ligase FadD12 (fatty-acid-CoA synthetase) (fatty-acid-CoA synthase) |
Comments | Rv1427c, (MTCY493.27), len: 535 aa. Possible fadD12, long-chain-fatty-acid-CoA synthetase, similar to many e.g. NP_302632.1|NC_002677 acyl-CoA synthase from Mycobacterium leprae (548 aa); AAD01929.2|AF031419 putative long-chain-fatty-acid--CoA ligase from Pseudomonas putida (565 aa); NP_419782.1|NC_002696 putative long-chain-fatty-acid--CoA ligase from Caulobacter crescentus (530 aa); PC60_YEAST|P38137 yeast peroxisomal-coenzyme A synthetase (543 aa), FASTA scores: opt: 507, E(): 2.9e-25, (30.4% identity in 365 aa overlap). Also similar to many M. tuberculosis proteins e.g. MTCY06A4.14 (44.8% identity in 525 aa overlap). Contains PS00455 Putative AMP-binding domain signature. Belongs to the ATP-dependent AMP-binding enzyme family. |
Functional category | Lipid metabolism |
Proteomics | Identified by mass spectrometry in whole cell lysates of M. tuberculosis H37Rv but not the culture filtrate or membrane protein fraction (See de Souza et al., 2011). |
Mutant | Non-essential gene for in vitro growth of H37Rv in a MtbYM rich medium, by Himar1 transposon mutagenesis (see Minato et al. 2019). Non-essential gene for in vitro growth of H37Rv, by analysis of saturated Himar1 transposon libraries (see DeJesus et al. 2017). Non-essential gene for in vitro growth of H37Rv, by Himar1 transposon mutagenesis (See Griffin et al., 2011). Check for mutants available at TARGET website |
Coordinates
Type | Start | End | Orientation |
---|---|---|---|
CDS | 1602321 | 1603928 | - |
Genomic sequence
Feature type
Upstream flanking region (bp)
Downstream flanking region (bp)
Update
Protein sequence
>Mycobacterium tuberculosis H37Rv|Rv1427c|fadD12 MRIRQAFGLIATMRRAGLIAPLRPDRYLRIVAAMRREGMGFTAGFAGAARRCPDRPGLIDELGTLTWRQLDERGNALAAALQALPAGPPRVVGIMCRNHRGFVDALLAVNRIGAHILLLNTSFAGPALAEVVTREGVDTVVYDEEFSATVDRALAEKPQATRIVAWTDEDHDLTVEKLVAAHAGRRPEHTGSHGKVILLTSGTTGTPKGARHSGGGIGTLKAILDRTPWRAEEVTVIVAPMFHAWGFSQLVLASSLACTIVTRRRFDPEATLDLIDRHHATGLVVVPVMFDRIMDLPAEIRNRYDGRSLRFAAASGSRMRPDVVIAFMDQFGDVIYNNYNATEAGMIATATPADLRTAPDTAGRPAEGTEIRILDQQFTEVPTGEVGTIYVRNDSQFDGYTSGAAKDFHAGFMSSGDVGYLDENGRLFVVGRDDEMIVSGGENIYPIEVEKTLATHPDVAEAAVIGVDDQQYGQRLAAFVVLKPGVSATPETLKQHVRDNLANYKVPRDIAVLDELPRGITGKILRTELQSRVGS
Bibliography
- Kendall SL, Withers M, Soffair CN, Moreland NJ, Gurcha S, Sidders B, Frita R, Ten Bokum A, Besra GS, Lott JS and Stoker NG [2007]. A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis. Regulation
- de Souza GA et al. [2011]. Bacterial proteins with cleaved or uncleaved signal peptides of the general secretory pathway. Proteomics
- Griffin JE et al. [2011]. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. Mutant
- DeJesus MA et al. [2017]. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. Mutant
- Minato Y et al. [2019]. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways. Mutant