Gene Rv1625c
in Mycobacterium tuberculosis H37Rv
General annotation
Type | CDS |
Function | Involved in cAMP synthesis [catalytic activity: ATP = 3',5'-cyclic AMP + diphosphate]. Inhibited by polyphosphates. |
Product | Membrane-anchored adenylyl cyclase Cya (ATP pyrophosphate-lyase) (adenylate cyclase) |
Comments | Rv1625c, (MT1661, MTCY01B2.17c), len: 443 aa. Cya, membrane-anchored adenylyl cyclase (see citations below). C-terminal half is similar to region in numerous eukaryotic adenylate and guanylate cyclases. N-terminal half hydrophobic. FASTA score: CYG2_RAT|P22717 guanylate cyclase soluble, beta-2 chain (682 aa), FASTA scores: opt: 552, E(): 2.7e-26, (40.3% identity in 226 aa overlap). Some similarity to Rv2435c|MTCY428.11 from Mycobacterium tuberculosis (730 aa), E(): 7e-19. Start changed since first submission (+25 aa). Belongs to adenylyl cyclase class-4/guanylyl cyclase family. |
Functional category | Intermediary metabolism and respiration |
Proteomics | Identified by mass spectrometry in M. tuberculosis H37Rv-infected guinea pig lungs at 90 days but not 30 days (See Kruh et al., 2010). |
Mutant | Non-essential gene for in vitro growth of H37Rv in a MtbYM rich medium, by Himar1 transposon mutagenesis (see Minato et al. 2019). Non-essential gene for in vitro growth of H37Rv, by analysis of saturated Himar1 transposon libraries (see DeJesus et al. 2017). Non essential gene by Himar1 transposon mutagenesis in H37Rv and CDC1551 strains (see Sassetti et al., 2003 and Lamichhane et al., 2003). Non-essential gene for in vitro growth of H37Rv, by Himar1 transposon mutagenesis (See Griffin et al., 2011). Growth and infection by M. tuberculosis H37Rv Rv1625c mutant is comparable to wild-type in C57BL/6 mice (See Guo et al., 2005). Check for mutants available at TARGET website |
Coordinates
Type | Start | End | Orientation |
---|---|---|---|
CDS | 1826614 | 1827945 | - |
Genomic sequence
Feature type
Upstream flanking region (bp)
Downstream flanking region (bp)
Update
Protein sequence
>Mycobacterium tuberculosis H37Rv|Rv1625c|cya VAARKCGAPPIAADGSTRRPDCVTAVRTQARAPTQHYAESVARRQRVLTITAWLAVVVTGSFALMQLATGAGGWYIALINVFTAVTFAIVPLLHRFGGLVAPLTFIGTAYVAIFAIGWDVGTDAGAQFFFLVAAALVVLLVGIEHTALAVGLAAVAAGLVIALEFLVPPDTGLQPPWAMSVSFVLTTVSACGVAVATVWFALRDTARAEAVMEAEHDRSEALLANMLPASIAERLKEPERNIIADKYDEASVLFADIVGFTERASSTAPADLVRFLDRLYSAFDELVDQHGLEKIKVSGDSYMVVSGVPRPRPDHTQALADFALDMTNVAAQLKDPRGNPVPLRVGLATGPVVAGVVGSRRFFYDVWGDAVNVASRMESTDSVGQIQVPDEVYERLKDDFVLRERGHINVKGKGVMRTWYLIGRKVAADPGEVRGAEPRTAGV
Bibliography
- Guo YL et al. [2001]. Adenylyl cyclase Rv1625c of Mycobacterium tuberculosis: a progenitor of mammalian adenylyl cyclases. Product
- Reddy SK et al. [2001]. Eukaryotic-like adenylyl cyclases in Mycobacterium tuberculosis H37Rv: cloning and characterization. Sequence
- Shenoy AR et al. [2002]. The ascent of nucleotide cyclases: conservation and evolution of a theme. Review
- Lamichhane G et al. [2003]. A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis. Mutant
- Shenoy AR et al. [2003]. Mutational analysis of the Mycobacterium tuberculosis Rv1625c adenylyl cyclase: residues that confer nucleotide specificity contribute to dimerization. Product Mutant Biochemistry
- Sassetti CM et al. [2003]. Genes required for mycobacterial growth defined by high density mutagenesis. Mutant
- Guo YL et al. [2005]. Interaction of Rv1625c, a mycobacterial class IIIa adenylyl cyclase, with a mammalian congener. Mutant
- Shenoy AR et al. [2005]. Characterization of phylogenetically distant members of the adenylate cyclase family from mycobacteria: Rv1647 from Mycobacterium tuberculosis and its orthologue ML1399 from M. leprae. Biochemistry
- Ketkar AD et al. [2006]. A structural basis for the role of nucleotide specifying residues in regulating the oligomerization of the Rv1625c adenylyl cyclase from M. tuberculosis. Structure
- Guo YL et al. [2009]. Polyphosphates from Mycobacterium bovis--potent inhibitors of class III adenylate cyclases. Biochemistry
- Kruh NA et al. [2010]. Portrait of a pathogen: the Mycobacterium tuberculosis proteome in vivo. Proteomics
- Griffin JE et al. [2011]. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. Mutant
- DeJesus MA et al. [2017]. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. Mutant
- Minato Y et al. [2019]. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways. Mutant