Gene Rv1853
in Mycobacterium tuberculosis H37Rv
General annotation
Type | CDS |
Function | Probably facilitates nickel incorporation |
Product | Probable urease accessory protein UreD |
Comments | Rv1853, (MTCY359.20c), len: 208 aa. UreD, probable urease accessory protein. Similar to URED_YEREN|P42868 Urease operon ureD protein from Yersinia enterocolitica (325 aa), Fasta scores: opt: 114, E(): 0.37, (25.2% identity in 119 aa overlap). |
Functional category | Intermediary metabolism and respiration |
Mutant | Non-essential gene for in vitro growth of H37Rv in a MtbYM rich medium, by Himar1 transposon mutagenesis (see Minato et al. 2019). Non-essential gene for in vitro growth of H37Rv, by analysis of saturated Himar1 transposon libraries (see DeJesus et al. 2017). Non essential gene by Himar1 transposon mutagenesis in H37Rv and CDC1551 strains (see Sassetti et al., 2003 and Lamichhane et al., 2003). Non-essential gene for in vitro growth of H37Rv, by Himar1 transposon mutagenesis (See Griffin et al., 2011). Check for mutants available at TARGET website |
Coordinates
Type | Start | End | Orientation |
---|---|---|---|
CDS | 2101022 | 2101648 | + |
Genomic sequence
Feature type
Upstream flanking region (bp)
Downstream flanking region (bp)
Update
Protein sequence
>Mycobacterium tuberculosis H37Rv|Rv1853|ureD VVASPNRLPRIDCRGGVQARRTAPDTVHLVSAAATPLGGDTMRIRVIVERGAQLRLRSAAATVALPGVDTLTSHAHWEIDVTGTLDVDLEPTVVAASARHLSHATLRLHDDGRVRLRERVQIGRCNEREGFWSSSLQADRHGRPLLRHRVELGAGSLADDVIAAPRATISELRYPATAFTDAIDARSTVLALAGGGTLSTWQADRLPG
Bibliography
- Lamichhane G et al. [2003]. A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis. Mutant
- Sassetti CM et al. [2003]. Genes required for mycobacterial growth defined by high density mutagenesis. Mutant
- Griffin JE et al. [2011]. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. Mutant
- DeJesus MA et al. [2017]. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. Mutant
- Minato Y et al. [2019]. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways. Mutant