Gene Rv2163c (ftsI)
in Mycobacterium tuberculosis H37Rv
General annotation
Type | CDS |
Function | Involved in peptidoglycan biosynthesis |
Product | Probable penicillin-binding membrane protein PbpB |
Comments | Rv2163c, (MTCY270.05), len: 679 aa. Probable pbpB, penicillin-binding membrane protein, similar to many bacterial PBP2 proteins e.g. P11882|PBP2_NEIME|PENA|NMA2072|NMB0413 penicillin-binding protein 2 (pbp-2) from Neisseria meningitidis (serogroups a and B) (581 aa), FASTA scores: opt: 665, E(): 1.6e-31, (33.2% identity in 591 aa overlap); etc. Also similar to Rv0016c and Rv2864c from Mycobacterium tuberculosis (2.8e-10). Contains PS00017 possible ATP/GTP-binding site motif A (P-loop) near C-terminus. FASTA best: PBP2_NEIME P11882 penicillin-binding protein 2 (pbp-2). (581 aa) opt: 665, E(): 1.6e-31; (33.2% identity in 591 aa overlap). FtsW|Rv2154c interacts with PbpB|Rv2163c and FtsZ|RvRv2150c (See Datta et al., 2006). Cleavage of PbpB|Rv2163c by Rv2869c under conditions of oxidative stress is prevented by Wag31|Rv2145c (See Mukherjee et al., 2009). |
Functional category | Cell wall and cell processes |
Proteomics | Identified by mass spectrometry in M. tuberculosis H37Rv-infected guinea pig lungs at 30 and 90 days (See Kruh et al., 2010). |
Mutant | Essential gene for in vitro growth of H37Rv in a MtbYM rich medium, by Himar1 transposon mutagenesis (see Minato et al. 2019). Essential gene domain for in vitro growth of H37Rv, by analysis of saturated Himar1 transposon libraries (see DeJesus et al. 2017). Essential gene by Himar1 transposon mutagenesis in H37Rv strain (see Sassetti et al., 2003). Essential gene for in vitro growth of H37Rv, by Himar1 transposon mutagenesis (See Griffin et al., 2011). Check for mutants available at TARGET website |
Coordinates
Type | Start | End | Orientation |
---|---|---|---|
CDS | 2425048 | 2427087 | - |
Genomic sequence
Feature type
Upstream flanking region (bp)
Downstream flanking region (bp)
Update
Protein sequence
>Mycobacterium tuberculosis H37Rv|Rv2163c|pbpB VSRAAPRRASQSQSTRPARGLRRPPGAQEVGQRKRPGKTQKARQAQEATKSRPATRSDVAPAGRSTRARRTRQVVDVGTRGASFVFRHRTGNAVILVLMLVAATQLFFLQVSHAAGLRAQAAGQLKVTDVQPAARGSIVDRNNDRLAFTIEARALTFQPKRIRRQLEEARKKTSAAPDPQQRLRDIAQEVAGKLNNKPDAAAVLKKLQSDETFVYLARAVDPAVASAICAKYPEVGAERQDLRQYPGGSLAANVVGGIDWDGHGLLGLEDSLDAVLAGTDGSVTYDRGSDGVVIPGSYRNRHKAVHGSTVVLTLDNDIQFYVQQQVQQAKNLSGAHNVSAVVLDAKTGEVLAMANDNTFDPSQDIGRQGDKQLGNPAVSSPFEPGSVNKIVAASAVIEHGLSSPDEVLQVPGSIQMGGVTVHDAWEHGVMPYTTTGVFGKSSNVGTLMLSQRVGPERYYDMLRKFGLGQRTGVGLPGESAGLVPPIDQWSGSTFANLPIGQGLSMTLLQMTGMYQAIANDGVRVPPRIIKATVAPDGSRTEEPRPDDIRVVSAQTAQTVRQMLRAVVQRDPMGYQQGTGPTAGVPGYQMAGKTGTAQQINPGCGCYFDDVYWITFAGIATADNPRYVIGIMLDNPARNSDGAPGHSAAPLFHNIAGWLMQRENVPLSPDPGPPLVLQAT
Bibliography
- Dahl JL et al. [2003]. The role of RelMtb-mediated adaptation to stationary phase in long-term persistence of Mycobacterium tuberculosis in mice. Regulon
- Sassetti CM et al. [2003]. Genes required for mycobacterial growth defined by high density mutagenesis. Mutant
- Datta P et al. [2006]. Interaction between FtsW and penicillin-binding protein 3 (PBP3) directs PBP3 to mid-cell, controls cell septation and mediates the formation of a trimeric complex involving FtsZ, FtsW and PBP3 in mycobacteria. Biochemistry
- Mukherjee P et al. [2009]. Novel role of Wag31 in protection of mycobacteria under oxidative stress. Biochemistry
- Kruh NA et al. [2010]. Portrait of a pathogen: the Mycobacterium tuberculosis proteome in vivo. Proteomics
- Griffin JE et al. [2011]. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. Mutant
- DeJesus MA et al. [2017]. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. Mutant
- Minato Y et al. [2019]. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways. Mutant