Gene Rv3289c
in Mycobacterium tuberculosis H37Rv
General annotation
Type | CDS |
Function | Unknown |
Product | Possible transmembrane protein |
Comments | Rv3289c, (MTCY71.29c), len: 125 aa. Possible transmembrane protein, showing slight similarity to other membrane proteins or glycoproteins. |
Functional category | Cell wall and cell processes |
Transcriptomics | mRNA identified by microarray analysis and up-regulated after 4h, 24h and 96h of starvation (see citation below). |
Mutant | Non-essential gene for in vitro growth of H37Rv in a MtbYM rich medium, by Himar1 transposon mutagenesis (see Minato et al. 2019). Disruption of this gene provides a growth advantage for in vitro growth of H37Rv, by analysis of saturated Himar1 transposon libraries (see DeJesus et al. 2017). Non essential gene by Himar1 transposon mutagenesis in H37Rv and CDC1551 strains (see Sassetti et al., 2003 and Lamichhane et al., 2003). Non-essential gene for in vitro growth of H37Rv, by Himar1 transposon mutagenesis (See Griffin et al., 2011). Check for mutants available at TARGET website |
Coordinates
Type | Start | End | Orientation |
---|---|---|---|
CDS | 3670034 | 3670411 | - |
Genomic sequence
Feature type
Upstream flanking region (bp)
Downstream flanking region (bp)
Update
Protein sequence
>Mycobacterium tuberculosis H37Rv|Rv3289c|Rv3289c MHEVGGPSRGDRLGRDDSEVHSAIRFAVVAAVVGVGFLIMGALLVSTCSGVDTAACGPPQRILLALGGPLILCAAGLWAFLRTYRVWRAEGTWWGWHGAGWFLLTLMVLTLCIGVPPIAGPVMAP
Bibliography
- Betts JC et al. [2002]. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Transcriptome
- Lamichhane G et al. [2003]. A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis. Mutant
- Sassetti CM et al. [2003]. Genes required for mycobacterial growth defined by high density mutagenesis. Mutant
- Golby P, Nunez J, Cockle PJ, Ewer K, Logan K, Hogarth P, Vordermeier HM, Hinds J, Hewinson RG and Gordon SV [2008]. Characterization of two in vivo-expressed methyltransferases of the Mycobacterium tuberculosis complex: antigenicity and genetic regulation. Regulon
- Griffin JE et al. [2011]. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. Mutant
- DeJesus MA et al. [2017]. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. Mutant
- Minato Y et al. [2019]. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways. Mutant