Gene Rv3339c
in Mycobacterium tuberculosis H37Rv
General annotation
Type | CDS |
Function | Involved in the KREBS cycle [catalytic activity: isocitrate + NADP(+) = 2-oxoglutarate + CO(2) + NADPH]. |
Product | Probable isocitrate dehydrogenase [NADP] Icd1 (oxalosuccinate decarboxylase) (IDH) (NADP+-specific ICDH) (IDP) |
Comments | Rv3339c, (MTV016.39c), len: 409 aa. Probable icd1, isocitrate dehydrogenase NADP-dependent, highly similar to many e.g. Q9A5C8|CC2522 from Caulobacter crescentus (403 aa), FASTA scores: opt: 1972, E(): 4.6e-115, (72.45% identity in 403 aa overlap); AAF73472|ICD from Rhizobium meliloti (404 aa), FASTA scores: opt: 1968, E(): 8.1e-115, (73.2% identity in 403 aa overlap); P50215|IDH_SPHYA from Sphingomonas yanoikuyae (406 aa), FASTA scores: opt: 1964, E(): 1.4e-114, (71.45% identity in 403 aa overlap); etc. Contains PS00470 Isocitrate and isopropylmalate dehydrogenases signature. Belongs to the isocitrate and isopropylmalate dehydrogenases family. Note that in H37Rv, Rv0066c is named icd2 and Rv3339c is icd1 while in CDC1551 and Erdman strains, Rv0066c is icd1 and Rv3339c is icd2. |
Functional category | Intermediary metabolism and respiration |
Proteomics | Identified in the membrane fraction of M. tuberculosis H37Rv using 1D-SDS-PAGE and uLC-MS/MS (See Gu et al., 2003). Identified in the cell membrane fraction of M. tuberculosis H37Rv using 2DLC/MS (See Mawuenyega et al., 2005). Identified by mass spectrometry in Triton X-114 extracts of M. tuberculosis H37Rv (See Malen et al., 2010). Identified by mass spectrometry in the culture filtrate, membrane protein fraction, and whole cell lysates of M. tuberculosis H37Rv (See de Souza et al., 2011). |
Mutant | Non-essential gene for in vitro growth of H37Rv in a MtbYM rich medium, by Himar1 transposon mutagenesis (see Minato et al. 2019). Non-essential gene for in vitro growth of H37Rv, by analysis of saturated Himar1 transposon libraries (see DeJesus et al. 2017). Non essential gene by Himar1 transposon mutagenesis in H37Rv and CDC1551 strains (see Sassetti et al., 2003 and Lamichhane et al., 2003). Non-essential gene for in vitro growth of H37Rv, by Himar1 transposon mutagenesis (See Griffin et al., 2011). Check for mutants available at TARGET website |
Coordinates
Type | Start | End | Orientation |
---|---|---|---|
CDS | 3724615 | 3725844 | - |
Genomic sequence
Feature type
Upstream flanking region (bp)
Downstream flanking region (bp)
Update
Protein sequence
>Mycobacterium tuberculosis H37Rv|Rv3339c|icd1 MSNAPKIKVSGPVVELDGDEMTRVIWKLIKDMLILPYLDIRLDYYDLGIEHRDATDDQVTIDAAYAIKKHGVGVKCATITPDEARVEEFNLKKMWLSPNGTIRNILGGTIFREPIVISNVPRLVPGWTKPIVIGRHAFGDQYRATNFKVDQPGTVTLTFTPADGSAPIVHEMVSIPEDGGVVLGMYNFKESIRDFARASFSYGLNAKWPVYLSTKNTILKAYDGMFKDEFERVYEEEFKAQFEAAGLTYEHRLIDDMVAACLKWEGGYVWACKNYDGDVQSDTVAQGYGSLGLMTSVLMTADGKTVEAEAAHGTVTRHYRQYQAGKPTSTNPIASIFAWTRGLQHRGKLDGTPEVIDFAHKLESVVIATVESGKMTKDLAILIGPEQDWLNSEEFLDAIADNLEKELAN
Bibliography
- Gu S et al. [2003]. Comprehensive proteomic profiling of the membrane constituents of a Mycobacterium tuberculosis strain. Proteomics
- Sassetti CM et al. [2003]. Genes required for mycobacterial growth defined by high density mutagenesis. Mutant
- Lamichhane G et al. [2003]. A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis. Mutant
- Mawuenyega KG et al. [2005]. Mycobacterium tuberculosis functional network analysis by global subcellular protein profiling. Proteomics
- MÃ¥len H et al. [2010]. Definition of novel cell envelope associated proteins in Triton X-114 extracts of Mycobacterium tuberculosis H37Rv. Proteomics
- Griffin JE et al. [2011]. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. Mutant
- de Souza GA et al. [2011]. Bacterial proteins with cleaved or uncleaved signal peptides of the general secretory pathway. Proteomics
- DeJesus MA et al. [2017]. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. Mutant
- Minato Y et al. [2019]. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways. Mutant