Gene Rv3515c
in Mycobacterium tuberculosis H37Rv
General annotation
Type | CDS |
Function | Function unknown, but involved in lipid degradation. |
Product | Fatty-acid-CoA ligase FadD19 (fatty-acid-CoA synthetase) (fatty-acid-CoA synthase) |
Comments | Rv3515c, (MTV023.22c), len: 548 aa. fadD19, fatty-acid-CoA synthetase, similar (or with similarity) to many e.g. Q9EXL2|FADD FADD protein from Streptomyces griseus (540 aa), FASTA scores: opt: 1449, E(): 1.5e-81, (46.0% identity in 535 aa overlap); AAB87139|MIG medium chain acyl-CoA synthetase precursor from Mycobacterium avium (550 aa), FASTA scores: opt: 1226, E(): 7.6e-68, (40.7% identity in 543 aa overlap); Q9A7C3|CC1801 putative 4-coumarate--CoA ligase from Caulobacter crescentus (561 aa), FASTA scores: opt: 979, E(): 1.2e-52, (34.05% identity in 531 aa overlap); O28502|AF1772 long-chain-fatty-acid--CoA ligase (FADD-7) from Archaeoglobus fulgidus (569 aa), FASTA scores: opt: 560, E(): 6.9e-27, (29.3% identity in 543 aa overlap); Q9A8N2|CC1321 long-chain-fatty-acid--CoA ligase from Caulobacter crescentus (583 aa), FASTA scores: opt: 544, E(): 6.7e-26, (27.2% identity in 518 aa overlap); P29212|LCFA_ECOLI|FADD|OLDD|B1805 long-chain-fatty-acid--CoA ligase from Escherichia coli strain K12 (561 aa), FASTA scores: opt: 460, E(): 4e-22, (26.3% identity in 567 aa overlap); etc. Contains PS00455 Putative AMP-binding domain signature. Note that upstream MTV023.20c|Rv3513c|fadD18 is identical to C-terminal part of FADD19|Rv3515c|MTV023.22c (probably result of partial gene duplication). |
Functional category | Lipid metabolism |
Proteomics | Identified by mass spectrometry in M. tuberculosis H37Rv-infected guinea pig lungs at 30 days but not 90 days (See Kruh et al., 2010). Identified by mass spectrometry in whole cell lysates of M. tuberculosis H37Rv but not the culture filtrate or membrane protein fraction (See de Souza et al., 2011). |
Transcriptomics | mRNA identified by DNA microarray analysis and up-regulated at high temperatures (see citation below). |
Mutant | Non-essential gene for in vitro growth of H37Rv in a MtbYM rich medium, by Himar1 transposon mutagenesis (see Minato et al. 2019). Non-essential gene for in vitro growth of H37Rv, by analysis of saturated Himar1 transposon libraries (see DeJesus et al. 2017). Non essential gene by Himar1 transposon mutagenesis in H37Rv and CDC1551 strains (see Sassetti et al., 2003 and Lamichhane et al., 2003). Non-essential gene for in vitro growth of H37Rv, but essential for in vitro growth on cholesterol; by sequencing of Himar1-based transposon mutagenesis (See Griffin et al., 2011). Check for mutants available at TARGET website |
Coordinates
Type | Start | End | Orientation |
---|---|---|---|
CDS | 3950824 | 3952470 | - |
Genomic sequence
Feature type
Upstream flanking region (bp)
Downstream flanking region (bp)
Update
Protein sequence
>Mycobacterium tuberculosis H37Rv|Rv3515c|fadD19 VAVALNIADLAEHAIDAVPDRVAVICGDEQLTYAQLEDKANRLAHHLIDQGVQKDDKVGLYCRNRIEIVIAMLGIVKAGAILVNVNFRYVEGELRYLFDNSDMVALVHERRYADRVANVLPDTPHVRTILVVEDGSDQDYRRYGGVEFYSAIAAGSPERDFGERSADAIYLLYTGGTTGFPKGVMWRHEDIYRVLFGGTDFATGEFVKDEYDLAKAAAANPPMIRYPIPPMIHGATQSATWMALFSGQTTVLAPEFNADEVWRTIHKHKVNLLFFTGDAMARPLVDALVKGNDYDLSSLFLLASTAALFSPSIKEKLLELLPNRVITDSIGSSETGFGGTSVVAAGQAHGGGPRVRIDHRTVVLDDDGNEVKPGSGMRGVIAKKGNIPVGYYKDEKKTAETFRTINGVRYAIPGDYAQVEEDGTVTMLGRGSVSINSGGEKVYPEEVEAALKGHPDVFDALVVGVPDPRYGQQVAAVVQARPGCRPSLAELDSFVRSEIAGYKVPRSLWFVDEVKRSPAGKPDYRWAKEQTEARPADDVHAGHVTSGG
Bibliography
- Stewart GR et al. [2002]. Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays. Transcriptome Mutant Regulation
- Lamichhane G et al. [2003]. A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis. Mutant
- Sassetti CM et al. [2003]. Genes required for mycobacterial growth defined by high density mutagenesis. Mutant
- Van der Geize R et al. [2007]. A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Function
- Kendall SL, Withers M, Soffair CN, Moreland NJ, Gurcha S, Sidders B, Frita R, Ten Bokum A, Besra GS, Lott JS and Stoker NG [2007]. A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis. Regulation
- Arora P et al. [2009]. Mechanistic and functional insights into fatty acid activation in Mycobacterium tuberculosis. Biochemistry Mutant
- Kruh NA et al. [2010]. Portrait of a pathogen: the Mycobacterium tuberculosis proteome in vivo. Proteomics
- de Souza GA et al. [2011]. Bacterial proteins with cleaved or uncleaved signal peptides of the general secretory pathway. Proteomics
- Griffin JE et al. [2011]. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. Mutant
- DeJesus MA et al. [2017]. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. Mutant
- Minato Y et al. [2019]. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways. Mutant