Gene Rv3779
in Mycobacterium tuberculosis H37Rv
General annotation
Type | CDS |
Function | Unknown |
Product | Probable conserved transmembrane protein alanine and leucine rich |
Comments | Rv3779, (MTCY13D12.13), len: 666 aa. Predicted to be in the GT-C superfamily of glycosyltransferases (See Liu and Mushegian, 2003). Probable conserved transmembrane ala-, leu-rich protein, equivalent to Q9CD98|ML0116 putative membrane protein from Mycobacterium leprae (654 aa), FASTA scores: opt: 1991, E(): 2e-112, (66.5% identity in 666 aa overlap). Shows some similarity with Q9RRU0|DR2395 putative NA+/H+ antiporter from Deinococcus radiodurans (458 aa), FASTA scores: opt: 138, E(): 0.69, (31.9% identity in 138 aa overlap). A core mycobacterial gene; conserved in mycobacterial strains (See Marmiesse et al., 2004). |
Functional category | Cell wall and cell processes |
Proteomics | Identified by mass spectrometry in M. tuberculosis H37Rv-infected guinea pig lungs at 90 days but not 30 days (See Kruh et al., 2010). Identified by mass spectrometry in whole cell lysates of M. tuberculosis H37Rv but not the culture filtrate or membrane protein fraction (See de Souza et al., 2011). |
Mutant | Non-essential gene for in vitro growth of H37Rv in a MtbYM rich medium, by Himar1 transposon mutagenesis (see Minato et al. 2019). Non-essential gene for in vitro growth of H37Rv, by analysis of saturated Himar1 transposon libraries (see DeJesus et al. 2017). Non essential gene by Himar1 transposon mutagenesis in H37Rv strain (see Sassetti et al., 2003). Non-essential gene for in vitro growth of H37Rv, but essential for in vitro growth on cholesterol; by sequencing of Himar1-based transposon mutagenesis (See Griffin et al., 2011). Check for mutants available at TARGET website |
Coordinates
Type | Start | End | Orientation |
---|---|---|---|
CDS | 4224985 | 4226985 | + |
Genomic sequence
Feature type
Upstream flanking region (bp)
Downstream flanking region (bp)
Update
Protein sequence
>Mycobacterium tuberculosis H37Rv|Rv3779|Rv3779 VGLWFGTLIALILLIAPGAMVARIAQLRWPVAIAVGPALTYGVVALAIIPYGALGIPWNGWTALAALAVTCAVATGLQLLLARFRDLDAEALAVSRWPAVTVAAGVLLGALLIGWAAYRGIPHWQSIPSTWDAVWHANTVRFILDTGQASSTHMGELRNVETHAPLYYPSVFHGLVAVFCQLTGAAPTTGYTLSSLAASVWLFPVSAAVLTWRAVRSHPGALWSASCASAEWRAAGAAGTAAALSASFTAVPYVEFDTAAMPNLAAYGIAVPTMVLITSTLRHRDRIPVAVLALVGVFSLHITGGIVVALLVSAWWLFEALRHPVRSRLADLLTLAGVAAMAGLVMLPQFLSVRQQEDIIAGHAFPTYLSKKRGLFDAVFQHSRHLNDFPVQYALIVLAAIGGLILLVKKIWWPLAVWLLLIVMNVDAGTPLGGPIGGVAGALGEFFYHDPRRIAAATTLLLMLMAGVALFATVMLLVAAAKRLTDRFRPQPVSVWASATATLLIGATLVSAWHYFPRHRFLFGDKYDSVMIDQKDLDAMAYLASLPGARDTLIGNANTDGTAWMYAVAGLHPLWTHYDYPLQQGPGYHRFIFWAYGRNGESDPRVLEAIQVLRIRYILTSTPTVRGFAVPDGLVSLETSRSWAKIYDNGEARIYEWRGTAAATHS
Bibliography
- Liu J et al. [2003]. Three monophyletic superfamilies account for the majority of the known glycosyltransferases. Homology
- Sassetti CM et al. [2003]. Genes required for mycobacterial growth defined by high density mutagenesis. Mutant
- Marmiesse M, Brodin P, Buchrieser C, Gutierrez C, Simoes N, Vincent V, Glaser P, Cole ST and Brosch R [2004]. Macro-array and bioinformatic analyses reveal mycobacterial 'core' genes, variation in the ESAT-6 gene family and new phylogenetic markers for the Mycobacterium tuberculosis complex. Homology
- Kruh NA et al. [2010]. Portrait of a pathogen: the Mycobacterium tuberculosis proteome in vivo. Proteomics
- Griffin JE et al. [2011]. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. Mutant
- de Souza GA et al. [2011]. Bacterial proteins with cleaved or uncleaved signal peptides of the general secretory pathway. Proteomics
- DeJesus MA et al. [2017]. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. Mutant
- Minato Y et al. [2019]. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways. Mutant