Gene Rv0440 (groL2, groEL-2, hsp65, hsp60)
in Mycobacterium tuberculosis H37Rv
General annotation
Type | CDS |
Function | Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. |
Product | 60 kDa chaperonin 2 GroEL2 (protein CPN60-2) (GroEL protein 2) (65 kDa antigen) (heat shock protein 65) (cell wall protein A) (antigen A) |
Comments | Rv0440, (MTV037.04), len: 540 aa. GroEL2 (alternate gene names: groL2, groEL-2, hsp65, hsp60), 60 kDa chaperonin 2 (see Shinnick 1987). Purified 65 kDa antigen can elicit a strong delayed-type hypersensitivity reaction in experimental animals infected with M. tuberculosis. This protein is one of the major immunoreactive proteins of the mycobacteria. This antigen contains epitopes that are common to various species of mycobacteria. Contains PS00296 Chaperonins cpn60 signature. Belongs to the chaperonin (HSP60) family. Phosphorylated in vitro by PknJ|Rv2088 (See Arora et al., 2010). |
Functional category | Virulence, detoxification, adaptation |
Proteomics | The product of this CDS corresponds to spots 1_212, 1_216, 1_233, 1_224, 1_247, 1_249, 1_25, 1_456, 1_457, 1_458 and 1_463 identified in culture supernatant by proteomics at the Max Planck Institute for Infection Biology, Berlin, Germany, and spots GroEL identified in cell wall and cytosol by proteomics at the Statens Serum Institute (Denmark). Note that in Mycobacterium bovis BCG, proteome analysis by 2D-electrophoresis and MS identified this homolog which showed increased expression inside macrophages (see Rosenkrands et al., 2000). Identified in immunodominant fractions of M. tuberculosis H37Rv cytosol using 2D-LPE, 2D-PAGE, and LC-MS or LC-MS/MS (See Covert et al., 2001). Identified in carbonate extracts of M. tuberculosis H37Rv membranes using 2DGE and MALDI-MS (See Sinha et al., 2002). Identified in the membrane fraction of M. tuberculosis H37Rv using 1D-SDS-PAGE and uLC-MS/MS (See Gu et al., 2003). Identified in the culture supernatant of M. tuberculosis H37Rv using mass spectrometry (See Mattow et al., 2003). Identified in the cytosol, cell wall, and cell membrane fractions of M. tuberculosis H37Rv using 2DLC/MS (See Mawuenyega et al., 2005). Identified in the membrane fraction of M. tuberculosis H37Rv using nanoLC-MS/MS (See Xiong et al., 2005). Identified by mass spectrometry in Triton X-114 extracts of M. tuberculosis H37Rv (See Malen et al., 2010). Identified by mass spectrometry in the culture filtrate, membrane protein fraction, and whole cell lysates of M. tuberculosis H37Rv (See de Souza et al., 2011). Translational start site supported by proteomics data (See Kelkar et al., 2011). |
Transcriptomics | mRNA identified by DNA microarray analysis; up-regulated at high temperatures and possibly down-regulated by hrcA|Rv2374c (see Stewart et al., 2002). Note that in Mycobacterium bovis BCG, Northern blotting analysis and cDNA-total RNA substractive hybridization strategy reveals increased expression of the corresponding transcript while inside macrophages (see Monahan et al., 2001). DNA microarrays show lower level of expression in M. tuberculosis H37Rv during Mg2+ starvation (See Walters et al., 2006). |
Mutant | Essential gene for in vitro growth of H37Rv in a MtbYM rich medium, by Himar1 transposon mutagenesis (see Minato et al. 2019). Essential gene for in vitro growth of H37Rv, by analysis of saturated Himar1 transposon libraries (see DeJesus et al. 2017). Essential gene by Himar1 transposon mutagenesis in H37Rv strain (see Sassetti et al., 2003). Essential gene for in vitro growth of H37Rv, by Himar1 transposon mutagenesis (See Griffin et al., 2011). Check for mutants available at TARGET website |
Coordinates
Type | Start | End | Orientation |
---|---|---|---|
CDS | 528608 | 530230 | + |
Genomic sequence
Feature type
Upstream flanking region (bp)
Downstream flanking region (bp)
Update
Protein sequence
>Mycobacterium tuberculosis H37Rv|Rv0440|groEL2 MAKTIAYDEEARRGLERGLNALADAVKVTLGPKGRNVVLEKKWGAPTITNDGVSIAKEIELEDPYEKIGAELVKEVAKKTDDVAGDGTTTATVLAQALVREGLRNVAAGANPLGLKRGIEKAVEKVTETLLKGAKEVETKEQIAATAAISAGDQSIGDLIAEAMDKVGNEGVITVEESNTFGLQLELTEGMRFDKGYISGYFVTDPERQEAVLEDPYILLVSSKVSTVKDLLPLLEKVIGAGKPLLIIAEDVEGEALSTLVVNKIRGTFKSVAVKAPGFGDRRKAMLQDMAILTGGQVISEEVGLTLENADLSLLGKARKVVVTKDETTIVEGAGDTDAIAGRVAQIRQEIENSDSDYDREKLQERLAKLAGGVAVIKAGAATEVELKERKHRIEDAVRNAKAAVEEGIVAGGGVTLLQAAPTLDELKLEGDEATGANIVKVALEAPLKQIAFNSGLEPGVVAEKVRNLPAGHGLNAQTGVYEDLLAAGVADPVKVTRSALQNAASIAGLFLTTEAVVADKPEKEKASVPGGGDMGGMDF
Bibliography
- Shinnick TM [1987]. The 65-kilodalton antigen of Mycobacterium tuberculosis. Product
- Rinke de Wit TF, Bekelie S, Osland A, Miko TL, Hermans PW, van Soolingen D, Drijfhout JW, Schoningh R, Janson AA and Thole JE [1992]. Mycobacteria contain two groEL genes: the second Mycobacterium leprae groEL gene is arranged in an operon with groES. Function
- Mollenkopf HJ et al. [1999]. A dynamic two-dimensional polyacrylamide gel electrophoresis database: the mycobacterial proteome via Internet. Proteomics
- Jungblut PR, Schaible UE, Mollenkopf HJ, Zimny-Arndt U, Raupach B, Mattow J, Halada P, Lamer S, Hagens K and Kaufmann SH [1999]. Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens. Proteomics
- Rosenkrands I et al. [2000]. Towards the proteome of Mycobacterium tuberculosis. Proteomics
- Rosenkrands I, Weldingh K, Jacobsen S, Hansen CV, Florio W, Gianetri I and Andersen P [2000]. Mapping and identification of Mycobacterium tuberculosis proteins by two-dimensional gel electrophoresis, microsequencing and immunodetection. Proteomics
- Monahan IM et al. [2001]. Differential expression of mycobacterial proteins following phagocytosis by macrophages. Homolog Proteomics
- Li MS, Monahan IM, Waddell SJ, Mangan JA, Martin SL, Everett MJ and Butcher PD [2001]. cDNA-RNA subtractive hybridization reveals increased expression of mycocerosic acid synthase in intracellular Mycobacterium bovis BCG. Homolog Transcriptome
- Lewthwaite JC, Coates AR, Tormay P, Singh M, Mascagni P, Poole S, Roberts M, Sharp L and Henderson B [2001]. Mycobacterium tuberculosis chaperonin 60.1 is a more potent cytokine stimulator than chaperonin 60.2 (Hsp 65) and contains a CD14-binding domain. Product Function
- Covert BA et al. [2001]. The application of proteomics in defining the T cell antigens of Mycobacterium tuberculosis. Proteomics
- Sinha S et al. [2002]. Proteome analysis of the plasma membrane of Mycobacterium tuberculosis. Proteomics
- Stewart GR et al. [2002]. Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays. Transcriptome Mutant Regulation
- Sassetti CM et al. [2003]. Genes required for mycobacterial growth defined by high density mutagenesis. Mutant
- Gu S et al. [2003]. Comprehensive proteomic profiling of the membrane constituents of a Mycobacterium tuberculosis strain. Proteomics
- Mattow J, Schaible UE, Schmidt F, Hagens K, Siejak F, Brestrich G, Haeselbarth G, Muller EC, Jungblut PR and Kaufmann SH [2003]. Comparative proteome analysis of culture supernatant proteins from virulent Mycobacterium tuberculosis H37Rv and attenuated M. bovis BCG Copenhagen. Proteomics
- Lima KM et al. [2003]. Single dose of a vaccine based on DNA encoding mycobacterial hsp65 protein plus TDM-loaded PLGA microspheres protects mice against a virulent strain of Mycobacterium tuberculosis. Secondary
- Qamra R and Mande SC [2004]. Crystal structure of the 65-kilodalton heat shock protein, chaperonin 60.2, of Mycobacterium tuberculosis. Structure
- Xiong Y, Chalmers MJ, Gao FP, Cross TA and Marshall AG [2005]. Identification of Mycobacterium tuberculosis H37Rv integral membrane proteins by one-dimensional gel electrophoresis and liquid chromatography electrospray ionization tandem mass spectrometry. Proteomics
- Mawuenyega KG et al. [2005]. Mycobacterium tuberculosis functional network analysis by global subcellular protein profiling. Proteomics
- Walters SB et al. [2006]. The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Transcriptome
- Gazdik MA, Bai G, Wu Y and McDonough KA [2009]. Rv1675c (cmr) regulates intramacrophage and cyclic AMP-induced gene expression in Mycobacterium tuberculosis-complex mycobacteria. Regulon
- MÃ¥len H et al. [2010]. Definition of novel cell envelope associated proteins in Triton X-114 extracts of Mycobacterium tuberculosis H37Rv. Proteomics
- Arora G et al. [2010]. Understanding the role of PknJ in Mycobacterium tuberculosis: biochemical characterization and identification of novel substrate pyruvate kinase A. Biochemistry
- Kelkar DS et al. [2011]. Proteogenomic analysis of Mycobacterium tuberculosis by high resolution mass spectrometry. Proteomics Sequence
- de Souza GA et al. [2011]. Bacterial proteins with cleaved or uncleaved signal peptides of the general secretory pathway. Proteomics
- Griffin JE et al. [2011]. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. Mutant
- DeJesus MA et al. [2017]. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. Mutant
- Minato Y et al. [2019]. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways. Mutant