Gene Rv0863
in Mycobacterium tuberculosis H37Rv
General annotation
Type | CDS |
Function | Function unknown |
Product | Conserved hypothetical protein |
Comments | Rv0863, (MTV043.56), len: 93 aa. Conserved hypothetical protein, highly similar to NP_302418.1|NC_002677 conserved hypothetical protein from Mycobacterium leprae (74 aa). Also weakly similar in part to U82598|ECU82598_135 hypothetical protein from Escherichia coli, FASTA scores: (32.4% identity in 71 aa overlap); and M74011|YEPYSCOP_8 hypothetical protein from Yersinia enterocolitica (165 aa), FASTA scores: (38.6 identity in 57 aa overlap). A core mycobacterial gene; conserved in mycobacterial strains (See Marmiesse et al., 2004). |
Functional category | Conserved hypotheticals |
Proteomics | Identified by mass spectrometry in M. tuberculosis H37Rv-infected guinea pig lungs at 30 days but not 90 days (See Kruh et al., 2010). |
Mutant | Non-essential gene for in vitro growth of H37Rv in a MtbYM rich medium, by Himar1 transposon mutagenesis (see Minato et al. 2019). Non-essential gene for in vitro growth of H37Rv, by analysis of saturated Himar1 transposon libraries (see DeJesus et al. 2017). Non essential gene by Himar1 transposon mutagenesis in H37Rv strain (see Sassetti et al., 2003). Non-essential gene for in vitro growth of H37Rv, by Himar1 transposon mutagenesis (See Griffin et al., 2011). Check for mutants available at TARGET website |
Coordinates
Type | Start | End | Orientation |
---|---|---|---|
CDS | 962599 | 962880 | + |
Genomic sequence
Feature type
Upstream flanking region (bp)
Downstream flanking region (bp)
Update
Protein sequence
>Mycobacterium tuberculosis H37Rv|Rv0863|Rv0863 VCSVIADQRRPDQPCGVGGCKTCQNGFVADIAEGKARKTRYVDHGWPTTDPDDHAVSELVTDRTGALSPFGELTFPVPSDDLPYIHPVTVINR
Bibliography
- Sassetti CM et al. [2003]. Genes required for mycobacterial growth defined by high density mutagenesis. Mutant
- Marmiesse M, Brodin P, Buchrieser C, Gutierrez C, Simoes N, Vincent V, Glaser P, Cole ST and Brosch R [2004]. Macro-array and bioinformatic analyses reveal mycobacterial 'core' genes, variation in the ESAT-6 gene family and new phylogenetic markers for the Mycobacterium tuberculosis complex. Homology
- Kruh NA et al. [2010]. Portrait of a pathogen: the Mycobacterium tuberculosis proteome in vivo. Proteomics
- Griffin JE et al. [2011]. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. Mutant
- Mazandu GK et al. [2012]. Function prediction and analysis of mycobacterium tuberculosis hypothetical proteins. Function
- DeJesus MA et al. [2017]. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. Mutant
- Minato Y et al. [2019]. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways. Mutant