Gene Rv1088
in Mycobacterium tuberculosis H37Rv
General annotation
Type | CDS |
Function | Function unknown |
Product | PE family protein PE9 |
Comments | Rv1088, (MTV017.41), len: 144 aa. PE9, Member of Mycobacterium tuberculosis PE family (see citation below), similar to many others e.g. Z96071|MTCI418B_6 Mycobacterium tuberculosis cosmid (487 aa), FASTA scores: opt: 318, E(): 7.3e-14, (60.9% identity in 87 aa overlap) - except it appears to be frameshifted around codon 84. No error to account for frameshift could be found. |
Functional category | Pe/ppe |
Proteomics | Identified in the cell membrane fraction of M. tuberculosis H37Rv using 2DLC/MS (See Mawuenyega et al., 2005). Identified by mass spectrometry in M. tuberculosis H37Rv-infected guinea pig lungs at 90 days but not 30 days (See Kruh et al., 2010). Translational start site supported by proteomics data (See Kelkar et al., 2011). |
Mutant | Non-essential gene for in vitro growth of H37Rv in a MtbYM rich medium, by Himar1 transposon mutagenesis (see Minato et al. 2019). Non-essential gene for in vitro growth of H37Rv, by analysis of saturated Himar1 transposon libraries (see DeJesus et al. 2017). Non essential gene by Himar1 transposon mutagenesis in H37Rv strain (see Sassetti et al., 2003). Check for mutants available at TARGET website |
Coordinates
Type | Start | End | Orientation |
---|---|---|---|
CDS | 1214513 | 1214947 | + |
Genomic sequence
Feature type
Upstream flanking region (bp)
Downstream flanking region (bp)
Update
Protein sequence
>Mycobacterium tuberculosis H37Rv|Rv1088|PE9 MSYMIATPAALTAAATDIDGIGSAVSVANAAAVAATTGVLAAGGDEVLAAIARLFNANAEEYHALSAQVAAFQTLFVRTLTGGCGVFRRRRGRQCVTAAEHRAAGAGRRQRRRRSGDGQWRLRQQRHFGCGGQPEFRQHSEHRR
Bibliography
- Brennan MJ et al. [2002]. The PE multigene family: a 'molecular mantra' for mycobacteria. Review
- Sassetti CM et al. [2003]. Genes required for mycobacterial growth defined by high density mutagenesis. Mutant
- Mawuenyega KG et al. [2005]. Mycobacterium tuberculosis functional network analysis by global subcellular protein profiling. Proteomics
- Kruh NA et al. [2010]. Portrait of a pathogen: the Mycobacterium tuberculosis proteome in vivo. Proteomics
- Kelkar DS et al. [2011]. Proteogenomic analysis of Mycobacterium tuberculosis by high resolution mass spectrometry. Proteomics Sequence
- DeJesus MA et al. [2017]. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. Mutant
- Minato Y et al. [2019]. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways. Mutant