Gene Rv1886c (mpt59, 85B)
in Mycobacterium tuberculosis H37Rv
General annotation
Type | CDS |
Function | Involved in cell wall mycoloylation. Proteins of the antigen 85 complex are responsible for the high affinity of mycobacteria to fibronectin. Possesses a mycolyltransferase activity required for the biogenesis of trehalose dimycolate (cord factor), a dominant structure necessary for maintaining cell wall integrity. |
Product | Secreted antigen 85-B FbpB (85B) (antigen 85 complex B) (mycolyl transferase 85B) (fibronectin-binding protein B) (extracellular alpha-antigen) |
Comments | Rv1886c, (MT1934, MTCY180.32), len: 325 aa. FbpB (alternate gene names: mpt59, 85B), precursor of the 85-B antigen (fibronectin-binding protein B) (mycolyl transferase 85B) (see citations below), highly similar to other Mycobacterial antigen precursors e.g. P12942|A85B_MYCBO antigen 85-B precursor from Mycobacterium bovis (323 aa); P21160|A85B_MYCKA antigen 85-B precursor from Mycobacterium kansasii (325 aa); etc. Also highly similar to Mycobacterium tuberculosis antigen precursors: Rv3804c|fbpA (338 aa), Rv0129c|fbpC2 (340 aa), and Rv3803c|fbpC1 (299 aa). Predicted possible vaccine candidate (See Zvi et al., 2008). |
Functional category | Lipid metabolism |
Proteomics | The product of this CDS corresponds to spot 3_501 identified in culture supernatant by proteomics at the Max Planck Institute for Infection Biology, Berlin, Germany, and spot 1886c identified in short term culture filtrate by proteomics at the Statens Serum Institute (Denmark) (see proteomics citations). Identified in immunodominant fractions of M. tuberculosis H37Rv culture filtrate using 2D-LPE, 2D-PAGE, and LC-MS or LC-MS/MS (See Covert et al., 2001). Identified in the membrane fraction of M. tuberculosis H37Rv using 1D-SDS-PAGE and uLC-MS/MS; predicted transmembrane protein (See Gu et al., 2003). Identified in the culture supernatant of M. tuberculosis H37Rv using mass spectrometry and Edman degradation (See Mattow et al., 2003). Predicted secreted protein - identified in culture filtrates of M. tuberculosis H37Rv; signal peptide predicted and cleavable signal sequence confirmed experimentally (See Malen et al., 2007). Identified in the culture filtrate of M. tuberculosis H37Rv using LC-MS/MS; antigen recognized by serum pool from tuberculosis patients (See Malen et al., 2008). Identified by mass spectrometry in Triton X-114 extracts of M. tuberculosis H37Rv (See Malen et al., 2010). Identified by mass spectrometry in the culture filtrate, membrane protein fraction, and whole cell lysates of M. tuberculosis H37Rv (See de Souza et al., 2011). |
Transcriptomics | mRNA identified by SCOTS method, 48h after infection of cultured human primary macrophages (see Graham & Clark-Curtiss 1999). Also identified by RT-PCR (see Desjardin et al., 2001). |
Mutant | Non-essential gene for in vitro growth of H37Rv in a MtbYM rich medium, by Himar1 transposon mutagenesis (see Minato et al. 2019). Disruption of this gene provides a growth advantage for in vitro growth of H37Rv, by analysis of saturated Himar1 transposon libraries (see DeJesus et al. 2017). Non essential gene by Himar1 transposon mutagenesis in H37Rv strain (see Sassetti et al., 2003). Non-essential gene for in vitro growth of H37Rv, by Himar1 transposon mutagenesis (See Griffin et al., 2011). Check for mutants available at TARGET website |
Coordinates
Type | Start | End | Orientation |
---|---|---|---|
CDS | 2134890 | 2135867 | - |
Genomic sequence
Feature type
Upstream flanking region (bp)
Downstream flanking region (bp)
Update
Protein sequence
>Mycobacterium tuberculosis H37Rv|Rv1886c|fbpB MTDVSRKIRAWGRRLMIGTAAAVVLPGLVGLAGGAATAGAFSRPGLPVEYLQVPSPSMGRDIKVQFQSGGNNSPAVYLLDGLRAQDDYNGWDINTPAFEWYYQSGLSIVMPVGGQSSFYSDWYSPACGKAGCQTYKWETFLTSELPQWLSANRAVKPTGSAAIGLSMAGSSAMILAAYHPQQFIYAGSLSALLDPSQGMGPSLIGLAMGDAGGYKAADMWGPSSDPAWERNDPTQQIPKLVANNTRLWVYCGNGTPNELGGANIPAEFLENFVRSSNLKFQDAYNAAGGHNAVFNFPPNGTHSWEYWGAQLNAMKGDLQSSLGAG
Bibliography
- De Wit L et al. [1994]. Nucleotide sequence of the 85B-protein gene of Mycobacterium bovis BCG and Mycobacterium tuberculosis. Sequence
- Lee BY et al. [1995]. Identification of macrophage and stress-induced proteins of Mycobacterium tuberculosis. Product Regulation
- Harth G et al. [1996]. Novel insights into the genetics, biochemistry, and immunocytochemistry of the 30-kilodalton major extracellular protein of Mycobacterium tuberculosis. Product
- Belisle JT et al. [1997]. Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis. Function
- Jungblut PR, Schaible UE, Mollenkopf HJ, Zimny-Arndt U, Raupach B, Mattow J, Halada P, Lamer S, Hagens K and Kaufmann SH [1999]. Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens. Proteomics
- Mollenkopf HJ et al. [1999]. A dynamic two-dimensional polyacrylamide gel electrophoresis database: the mycobacterial proteome via Internet. Proteomics
- Graham JE and Clark-Curtiss JE [1999]. Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). Transcriptome
- Rosenkrands I, Weldingh K, Jacobsen S, Hansen CV, Florio W, Gianetri I and Andersen P [2000]. Mapping and identification of Mycobacterium tuberculosis proteins by two-dimensional gel electrophoresis, microsequencing and immunodetection. Proteomics
- Rosenkrands I et al. [2000]. Towards the proteome of Mycobacterium tuberculosis. Proteomics
- Anderson DH et al. [2001]. An interfacial mechanism and a class of inhibitors inferred from two crystal structures of the Mycobacterium tuberculosis 30 kDa major secretory protein (Antigen 85B), a mycolyl transferase. Structure
- Desjardin LE et al. [2001]. Microaerophilic induction of the alpha-crystallin chaperone protein homologue (hspX) mRNA of Mycobacterium tuberculosis. Secondary Transcriptome
- Covert BA et al. [2001]. The application of proteomics in defining the T cell antigens of Mycobacterium tuberculosis. Proteomics
- Puech V et al. [2002]. Evidence for a partial redundancy of the fibronectin-binding proteins for the transfer of mycoloyl residues onto the cell wall arabinogalactan termini of Mycobacterium tuberculosis. Secondary Mutant
- Kremer L et al. [2002]. The M. tuberculosis antigen 85 complex and mycolyltransferase activity. Function
- Sassetti CM et al. [2003]. Genes required for mycobacterial growth defined by high density mutagenesis. Mutant
- Gu S et al. [2003]. Comprehensive proteomic profiling of the membrane constituents of a Mycobacterium tuberculosis strain. Proteomics
- Mattow J, Schaible UE, Schmidt F, Hagens K, Siejak F, Brestrich G, Haeselbarth G, Muller EC, Jungblut PR and Kaufmann SH [2003]. Comparative proteome analysis of culture supernatant proteins from virulent Mycobacterium tuberculosis H37Rv and attenuated M. bovis BCG Copenhagen. Proteomics
- Målen H et al. [2007]. Comprehensive analysis of exported proteins from Mycobacterium tuberculosis H37Rv. Proteomics
- Malen H, Softeland T and Wiker HG [2008]. Antigen analysis of Mycobacterium tuberculosis H37Rv culture filtrate proteins. Proteomics
- Zvi A et al. [2008]. Whole genome identification of Mycobacterium tuberculosis vaccine candidates by comprehensive data mining and bioinformatic analyses. Immunology
- Målen H et al. [2010]. Definition of novel cell envelope associated proteins in Triton X-114 extracts of Mycobacterium tuberculosis H37Rv. Proteomics
- Griffin JE et al. [2011]. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. Mutant
- de Souza GA et al. [2011]. Bacterial proteins with cleaved or uncleaved signal peptides of the general secretory pathway. Proteomics
- DeJesus MA et al. [2017]. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. Mutant
- Minato Y et al. [2019]. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways. Mutant