Gene Rv1906c
in Mycobacterium tuberculosis H37Rv
General annotation
Type | CDS |
Function | Function unknown |
Product | Conserved protein |
Comments | Rv1906c, (MTCY180.12), len: 156 aa. Conserved protein, possibly exported protein, equivalent to Mycobacterium leprae AJ000521|MLCOSL672.01 (153 aa), FASTA scores: opt: 637, E(): 2.6e-28, (63.2% identity in 155 aa overlap). Also similar to M. tuberculosis hypothetical exported protein, Rv1352. A core mycobacterial gene; conserved in mycobacterial strains (See Marmiesse et al., 2004). Predicted to be an outer membrane protein (See Song et al., 2008). |
Functional category | Conserved hypotheticals |
Proteomics | Predicted secreted protein - identified in culture filtrates of M. tuberculosis H37Rv; signal peptide predicted and cleavable signal sequence confirmed experimentally (See Malen et al., 2007). Identified by mass spectrometry in the culture filtrate of M. tuberculosis H37Rv but not the membrane protein fraction or whole cell lysates (See de Souza et al., 2011). |
Mutant | Non-essential gene for in vitro growth of H37Rv in a MtbYM rich medium, by Himar1 transposon mutagenesis (see Minato et al. 2019). Non-essential gene for in vitro growth of H37Rv, by analysis of saturated Himar1 transposon libraries (see DeJesus et al. 2017). Non essential gene by Himar1 transposon mutagenesis in H37Rv and CDC1551 strains (see Sassetti et al., 2003 and Lamichhane et al., 2003). Essential gene for in vitro growth of H37Rv on cholesterol, by sequencing of Himar1-based transposon mutagenesis (See Griffin et al., 2011). Check for mutants available at TARGET website |
Coordinates
Type | Start | End | Orientation |
---|---|---|---|
CDS | 2152425 | 2152895 | - |
Genomic sequence
Feature type
Upstream flanking region (bp)
Downstream flanking region (bp)
Update
Protein sequence
>Mycobacterium tuberculosis H37Rv|Rv1906c|Rv1906c MRLKPAPSPAAAFAVAGLILAGWAGSVGLAGADPEPAPTPKTAIDSDGTYAVGIDIAPGTYSSAGPVGDGTCYWKRMGNPDGALIDNALSKKPQVVTIEPTDKAFKTHGCQPWQNTGSEGAAPAGVPGPEAGAQLQNQLGILNGLLGPTGGRVPQP
Bibliography
- Lamichhane G et al. [2003]. A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis. Mutant
- Sassetti CM et al. [2003]. Genes required for mycobacterial growth defined by high density mutagenesis. Mutant
- Marmiesse M, Brodin P, Buchrieser C, Gutierrez C, Simoes N, Vincent V, Glaser P, Cole ST and Brosch R [2004]. Macro-array and bioinformatic analyses reveal mycobacterial 'core' genes, variation in the ESAT-6 gene family and new phylogenetic markers for the Mycobacterium tuberculosis complex. Homology
- MÃ¥len H et al. [2007]. Comprehensive analysis of exported proteins from Mycobacterium tuberculosis H37Rv. Proteomics
- Song H, Sandie R, Wang Y, Andrade-Navarro MA and Niederweis M [2008]. Identification of outer membrane proteins of Mycobacterium tuberculosis. Localization
- Griffin JE et al. [2011]. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. Mutant
- de Souza GA et al. [2011]. Bacterial proteins with cleaved or uncleaved signal peptides of the general secretory pathway. Proteomics
- DeJesus MA et al. [2017]. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. Mutant
- Minato Y et al. [2019]. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways. Mutant