Gene Rv2200c
in Mycobacterium tuberculosis H37Rv
General annotation
Type | CDS |
Function | Involved in aerobic respiration. Subunit I and II form the functional core of the enzyme complex. Electrons originating in cytochrome C are transferred via heme a and Cu(A) to the binuclear center formed by heme A3 and Cu(B). |
Product | Probable transmembrane cytochrome C oxidase (subunit II) CtaC |
Comments | Rv2200c, (MTCY190.11c), len: 363 aa. Probable ctaC, transmembrane cytochrome C oxidase (subunit II), COX2, similar e.g. to JT0964 cytochrome-c oxidase chain II (23.0% identity in 317 aa overlap); etc. Contains PS00078 Cytochrome c oxidase subunit II, copper a binding region signature. Belongs to the cytochrome C oxidase subunit 2 family. |
Functional category | Intermediary metabolism and respiration |
Proteomics | Identified in the membrane fraction of M. tuberculosis H37Rv using 1D-SDS-PAGE and uLC-MS/MS; predicted transmembrane protein (See Gu et al., 2003). Identified in the membrane fraction of M. tuberculosis H37Rv using nanoLC-MS/MS; predicted integral membrane protein (See Xiong et al., 2005). Predicted transmembrane protein - identified in culture filtrates of M. tuberculosis H37Rv; signal peptide predicted (See Malen et al., 2007). Identified by mass spectrometry in Triton X-114 extracts of M. tuberculosis H37Rv (See Malen et al., 2010). Identified by mass spectrometry in the membrane protein fraction and whole cell lysates of M. tuberculosis H37Rv but not the culture filtrate (See de Souza et al., 2011). |
Mutant | Essential gene for in vitro growth of H37Rv in a MtbYM rich medium, by Himar1 transposon mutagenesis (see Minato et al. 2019). Disruption of this gene results in growth defect of H37Rv in vitro, by analysis of saturated Himar1 transposon libraries (see DeJesus et al. 2017). Essential gene by Himar1 transposon mutagenesis in H37Rv strain (see Sassetti et al.,2003). Non essential gene by Himar1 transposon mutagenesis in CDC1551 strain (see Lamichhane et al., 2003). Essential gene for in vitro growth of H37Rv, by Himar1 transposon mutagenesis (See Griffin et al., 2011). Check for mutants available at TARGET website |
Coordinates
Type | Start | End | Orientation |
---|---|---|---|
CDS | 2463660 | 2464751 | - |
Genomic sequence
Feature type
Upstream flanking region (bp)
Downstream flanking region (bp)
Update
Protein sequence
>Mycobacterium tuberculosis H37Rv|Rv2200c|ctaC VTPRGPGRLQRLSQCRPQRGSGGPARGLRQLALAAMLGALAVTVSGCSWSEALGIGWPEGITPEAHLNRELWIGAVIASLAVGVIVWGLIFWSAVFHRKKNTDTELPRQFGYNMPLELVLTVIPFLIISVLFYFTVVVQEKMLQIAKDPEVVIDITSFQWNWKFGYQRVNFKDGTLTYDGADPERKRAMVSKPEGKDKYGEELVGPVRGLNTEDRTYLNFDKVETLGTSTEIPVLVLPSGKRIEFQMASADVIHAFWVPEFLFKRDVMPNPVANNSVNVFQIEEITKTGAFVGHCAEMCGTYHSMMNFEVRVVTPNDFKAYLQQRIDGKTNAEALRAINQPPLAVTTHPFDTRRGELAPQPVG
Bibliography
- Gu S et al. [2003]. Comprehensive proteomic profiling of the membrane constituents of a Mycobacterium tuberculosis strain. Proteomics
- Sassetti CM et al. [2003]. Genes required for mycobacterial growth defined by high density mutagenesis. Mutant
- Lamichhane G et al. [2003]. A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis. Mutant
- Xiong Y, Chalmers MJ, Gao FP, Cross TA and Marshall AG [2005]. Identification of Mycobacterium tuberculosis H37Rv integral membrane proteins by one-dimensional gel electrophoresis and liquid chromatography electrospray ionization tandem mass spectrometry. Proteomics
- Målen H et al. [2007]. Comprehensive analysis of exported proteins from Mycobacterium tuberculosis H37Rv. Proteomics
- Målen H et al. [2010]. Definition of novel cell envelope associated proteins in Triton X-114 extracts of Mycobacterium tuberculosis H37Rv. Proteomics
- Griffin JE et al. [2011]. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. Mutant
- de Souza GA et al. [2011]. Bacterial proteins with cleaved or uncleaved signal peptides of the general secretory pathway. Proteomics
- DeJesus MA et al. [2017]. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. Mutant
- Minato Y et al. [2019]. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways. Mutant