Gene Rv2946c
in Mycobacterium tuberculosis H37Rv
General annotation
Type | CDS |
Function | Polyketide synthase possibly involved in lipid synthesis |
Product | Probable polyketide synthase Pks1 |
Comments | Rv2946c, (MTCY24G1.03), len: 1616 aa. Probable pks1, polyketide synthase, similar to many e.g. ML035|AL583917|Q9CD81 putative polyketide synthase from Mycobacterium leprae (2103 aa), Fasta scores: opt: 8761, E(): 0, (82.6% identity in 1620 aa overlap); etc. Almost identical in part to G560507|Q50470 PKS002C protein from Mycobacterium tuberculosis (fragment) (950 aa), Fasta scores: opt: 5685, E(): 0, (95.3% identity in 927 aa overlap). Also similar to Mycobacterium tuberculosis polyketide synthases pks7|Rv1661|P94996 (2126 aa) (54.6% identity in 1632 aa); pks12|Rv2048c|O53490 (4151 aa) (58.0% identity in 1606 aa); pks8|rv1662|O65933 (1602 aa) (59.7% identity in 1144 aa). Contains a PS00012 Phosphopantetheine attachment site. Note pks1 has been shown to be involved in the biosynthesis of phthiocerol. pks15/pks1 has been shown to be involved in the biosynthesis of phenolphthiocerol glycolipids. |
Functional category | Lipid metabolism |
Proteomics | Identified in the cell membrane fraction of M. tuberculosis H37Rv using 2DLC/MS (See Mawuenyega et al., 2005). |
Mutant | Non-essential gene for in vitro growth of H37Rv in a MtbYM rich medium, by Himar1 transposon mutagenesis (see Minato et al. 2019). Non-essential gene for in vitro growth of H37Rv, by analysis of saturated Himar1 transposon libraries (see DeJesus et al. 2017). Non essential gene by Himar1 transposon mutagenesis in H37Rv and CDC1551 strains (see Sassetti et al., 2003 and Lamichhane et al., 2003). Non-essential gene for in vitro growth of H37Rv, by Himar1 transposon mutagenesis (See Griffin et al., 2011). Check for mutants available at TARGET website |
Coordinates
Type | Start | End | Orientation |
---|---|---|---|
CDS | 3291503 | 3296353 | - |
Genomic sequence
Feature type
Upstream flanking region (bp)
Downstream flanking region (bp)
Update
Protein sequence
>Mycobacterium tuberculosis H37Rv|Rv2946c|pks1 VISARSAEALTAQAGRLMAHVQANPGLDPIDVGCSLASRSVFEHRAVVVGASREQLIAGLAGLAAGEPGAGVAVGQPGSVGKTVVVFPGQGAQRIGMGRELYGELPVFAQAFDAVADELDRHLRLPLRDVIWGADADLLDSTEFAQPALFAVEVASFAVLRDWGVLPDFVMGHSVGELAAAHAAGVLTLADAAMLVVARGRLMQALPAGGAMVAVAASEDEVEPLLGEGVGIAAINAPESVVISGAQAAANAIADRFAAQGRRVHQLAVSHAFHSPLMEPMLEEFARVAARVQAREPQLGLVSNVTGELAGPDFGSAQYWVDHVRRPVRFADSARHLQTLGATHFIEAGPGSGLTGSIEQSLAPAEAMVVSMLGKDRPELASALGAAGQVFTTGVPVQWSAVFAGSGGRRVQLPTYAFQRRRFWETPGADGPADAAGLGLGATEHALLGAVVERPDSDEVVLTGRLSLADQPWLADHVVNGVVLFPGAGFVELVIRAGDEVGCALIEELVLAAPLVMHPGVGVQVQVVVGAADESGHRAVSVYSRGDQSQGWLLNAEGMLGVAAAETPMDLSVWPPEGAESVDISDGYAQLAERGYAYGPAFQGLVAIWRRGSELFAEVVAPGEAGVAVDRMGMHPAVLDAVLHALGLAVEKTQASTETRLPFCWRGVSLHAGGAGRVRARFASAGADAISVDVCDATGLPVLTVRSLVTRPITAEQLRAAVTAAGGASDQGPLEVVWSPISVVSGGANGSAPPAPVSWADFCAGSDGDASVVVWELESAGGQASSVVGSVYAATHTALEVLQSWLGADRAATLVVLTHGGVGLAGEDISDLAAAAVWGMARSAQAENPGRIVLIDTDAAVDASVLAGVGEPQLLVRGGTVHAPRLSPAPALLALPAAESAWRLAAGGGGTLEDLVIQPCPEVQAPLQAGQVRVAVAAVGVNFRDVVAALGMYPGQAPPLGAEGAGVVLETGPEVTDLAVGDAVMGFLGGAGPLAVVDQQLVTRVPQGWSFAQAAAVPVVFLTAWYGLADLAEIKAGESVLIHAGTGGVGMAAVQLARQWGVEVFVTASRGKWDTLRAMGFDDDHIGDSRTCEFEEKFLAVTEGRGVDVVLDSLAGEFVDASLRLLVRGGRFLEMGKTDIRDAQEIAANYPGVQYRAFDLSEAGPARMQEMLAEVRELFDTRELHRLPVTTWDVRCAPAAFRFMSQARHIGKVVLTMPSALADRLADGTVVITGATGAVGGVLARHLVGAYGVRHLVLASRRGDRAEGAAELAADLTEAGAKVQVVACDVADRAAVAGLFAQLSREYPPVRGVIHAAGVLDDAVITSLTPDRIDTVLRAKVDAAWNLHQATSDLDLSMFALCSSIAATVGSPGQGNYSAANAFLDGLAAHRQAAGLAGISLAWGLWEQPGGMTAHLSSRDLARMSRSGLAPMSPAEAVELFDAALAIDHPLAVATLLDRAALDARAQAGALPALFSGLARRPRRRQIDDTGDATSSKSALAQRLHGLAADEQLELLVGLVCLQAAAVLGRPSAEDVDPDTEFGDLGFDSLTAVELRNRLKTATGLTLPPTVIFDHPTPTAVAEYVAQQMSGSRPTESGDPTSQVVEPAAAEVSVHA
Bibliography
- Constant P et al. [2002]. Role of the pks15/1 gene in the biosynthesis of phenolglycolipids in the Mycobacterium tuberculosis complex. Evidence that all strains synthesize glycosylated p-hydroxybenzoic methyl esters and that strains devoid of phenolglycolipids harbor a frameshift mutation in the pks15/1 gene. Function Mutant
- Sassetti CM et al. [2003]. Genes required for mycobacterial growth defined by high density mutagenesis. Mutant
- Sirakova TD et al. [2003]. Attenuation of Mycobacterium tuberculosis by disruption of a mas-like gene or a chalcone synthase-like gene, which causes deficiency in dimycocerosyl phthiocerol synthesis. Mutant Function
- Lamichhane G et al. [2003]. A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis. Mutant
- Mawuenyega KG et al. [2005]. Mycobacterium tuberculosis functional network analysis by global subcellular protein profiling. Proteomics
- He W et al. [2009]. Cooperation between a coenzyme A-independent stand-alone initiation module and an iterative type I polyketide synthase during synthesis of mycobacterial phenolic glycolipids. Biochemistry
- Griffin JE et al. [2011]. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. Mutant
- DeJesus MA et al. [2017]. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. Mutant
- Minato Y et al. [2019]. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways. Mutant