Gene Rv3852
in Mycobacterium tuberculosis H37Rv
General annotation
Type | CDS |
Function | Function unknown |
Product | Possible histone-like protein Hns |
Comments | Rv3852, (MTCY01A6.16c), len: 134 aa. Possible hns, histone-like protein, equivalent to Q9CDD1|HNS|ML0067 histone-like protein from Mycobacterium leprae (121 aa), FASTA scores: opt: 341, E(): 4.3e-09, (51.5% identity in 134 aa overlap). Shows some similarity with other histone-like proteins e.g. O65795|HIS1 histone H1 from Triticum aestivum (Wheat) (288 aa), FASTA scores: opt: 183, E(): 0.091, (34.85% identity in 109 aa overlap); etc. |
Functional category | Information pathways |
Proteomics | Identified in the membrane fraction of M. tuberculosis H37Rv using nanoLC-MS/MS; predicted integral membrane protein (See Xiong et al., 2005). Identified by mass spectrometry in Triton X-114 extracts of M. tuberculosis H37Rv (See Malen et al., 2010). Identified by mass spectrometry in the membrane protein fraction and whole cell lysates of M. tuberculosis H37Rv but not the culture filtrate (See de Souza et al., 2011). Translational start site supported by proteomics data (See Kelkar et al., 2011). |
Transcriptomics | mRNA identified by DNA microarray analysis: possibly down-regulated by hrcA|Rv2374c (see Stewart et al., 2002), and up-regulated after 4h of starvation (see Betts et al., 2002). |
Mutant | Non-essential gene for in vitro growth of H37Rv in a MtbYM rich medium, by Himar1 transposon mutagenesis (see Minato et al. 2019). Non-essential gene for in vitro growth of H37Rv, by analysis of saturated Himar1 transposon libraries (see DeJesus et al. 2017). Non essential gene by Himar1 transposon mutagenesis in H37Rv strain (see Sassetti et al., 2003). Non-essential gene for in vitro growth of H37Rv, by Himar1 transposon mutagenesis (See Griffin et al., 2011). Check for mutants available at TARGET website |
Coordinates
Type | Start | End | Orientation |
---|---|---|---|
CDS | 4325074 | 4325478 | + |
Genomic sequence
Feature type
Upstream flanking region (bp)
Downstream flanking region (bp)
Update
Protein sequence
>Mycobacterium tuberculosis H37Rv|Rv3852|hns MPDPQDRPDSEPSDASTPPAKKLPAKKAAKKAPARKTPAKKAPAKKTPAKGAKSAPPKPAEAPVSLQQRIETNGQLAAAAKDAAAQAKSTVEGANDALARNASVPAPSHSPVPLIVAVTLSLLALLLIRQLRRR
Bibliography
- Stewart GR et al. [2002]. Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays. Transcriptome Regulation
- Betts JC et al. [2002]. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Transcriptome
- Sassetti CM et al. [2003]. Genes required for mycobacterial growth defined by high density mutagenesis. Mutant
- Xiong Y, Chalmers MJ, Gao FP, Cross TA and Marshall AG [2005]. Identification of Mycobacterium tuberculosis H37Rv integral membrane proteins by one-dimensional gel electrophoresis and liquid chromatography electrospray ionization tandem mass spectrometry. Proteomics
- MÃ¥len H et al. [2010]. Definition of novel cell envelope associated proteins in Triton X-114 extracts of Mycobacterium tuberculosis H37Rv. Proteomics
- Kelkar DS et al. [2011]. Proteogenomic analysis of Mycobacterium tuberculosis by high resolution mass spectrometry. Proteomics Sequence
- de Souza GA et al. [2011]. Bacterial proteins with cleaved or uncleaved signal peptides of the general secretory pathway. Proteomics
- Griffin JE et al. [2011]. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. Mutant
- DeJesus MA et al. [2017]. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. Mutant
- Minato Y et al. [2019]. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways. Mutant