Gene Rv0125 (mtb32a)
in Mycobacterium tuberculosis H37Rv
General annotation
Type | CDS |
Function | Function unknown; possibly hydrolyzes peptides and/or proteins (seems to cleave preferentially after serine residues). |
Product | Probable serine protease PepA (serine proteinase) (MTB32A) |
Comments | Rv0125, (MTCI418B.07, MTB32A), len: 355 aa. Probable pepA (alternate gene name: mtb32a), serine protease (see Skeiky et al., 1999), highly similar to other proteases e.g. HHOB_ECOLI|P31137 protease hhob precursor (355 aa), FASTA scores: opt: 400, E(): 3.8e-14, (32.4% identity in 346 aa overlap). Also similar to Q50320 34 kDa protein precursor from Mycobacterium tuberculosis (361 aa), FASTA scores: opt: 1689, E(): 0, (70.7% identity in 362 aa overlap). Contains PS00135 Serine proteases, trypsin family, serine active site. Has a putative signal sequence at the N-terminus. Belongs to the serine protease family. Conserved in M. tuberculosis, M. leprae, M. bovis and M. avium paratuberculosis; predicted to be essential for in vivo survival and pathogenicity (See Ribeiro-Guimaraes and Pessolani, 2007). |
Functional category | Intermediary metabolism and respiration |
Proteomics | Identified in the culture supernatant of M. tuberculosis H37Rv using mass spectrometry and Edman degradation (See Mattow et al., 2003). Predicted secreted protein - identified in culture filtrates of M. tuberculosis H37Rv; signal peptide predicted and cleavable signal sequence confirmed experimentally (See Malen et al., 2007). Identified by mass spectrometry in Triton X-114 extracts of M. tuberculosis H37Rv (See Malen et al., 2010). Identified by mass spectrometry in the culture filtrate, membrane protein fraction, and whole cell lysates of M. tuberculosis H37Rv (See de Souza et al., 2011). |
Transcriptomics | mRNA identified by microarray analysis and up-regulated after 96h of starvation (see Betts et al., 2002). |
Mutant | Non-essential gene for in vitro growth of H37Rv in a MtbYM rich medium, by Himar1 transposon mutagenesis (see Minato et al. 2019). Non-essential gene for in vitro growth of H37Rv, by analysis of saturated Himar1 transposon libraries (see DeJesus et al. 2017). Non-essential gene for in vitro growth of H37Rv, by Himar1 transposon mutagenesis (See Griffin et al., 2011). Check for mutants available at TARGET website |
Coordinates
Type | Start | End | Orientation |
---|---|---|---|
CDS | 151148 | 152215 | + |
Genomic sequence
Feature type
Upstream flanking region (bp)
Downstream flanking region (bp)
Update
Protein sequence
>Mycobacterium tuberculosis H37Rv|Rv0125|pepA MSNSRRRSLRWSWLLSVLAAVGLGLATAPAQAAPPALSQDRFADFPALPLDPSAMVAQVGPQVVNINTKLGYNNAVGAGTGIVIDPNGVVLTNNHVIAGATDINAFSVGSGQTYGVDVVGYDRTQDVAVLQLRGAGGLPSAAIGGGVAVGEPVVAMGNSGGQGGTPRAVPGRVVALGQTVQASDSLTGAEETLNGLIQFDAAIQPGDSGGPVVNGLGQVVGMNTAASDNFQLSQGGQGFAIPIGQAMAIAGQIRSGGGSPTVHIGPTAFLGLGVVDNNGNGARVQRVVGSAPAASLGISTGDVITAVDGAPINSATAMADALNGHHPGDVISVTWQTKSGGTRTGNVTLAEGPPA
Bibliography
- Skeiky YA, Lodes MJ, Guderian JA, Mohamath R, Bement T, Alderson MR and Reed SG [1999]. Cloning, expression, and immunological evaluation of two putative secreted serine protease antigens of Mycobacterium tuberculosis. Product
- Betts JC et al. [2002]. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Transcriptome
- Mattow J, Schaible UE, Schmidt F, Hagens K, Siejak F, Brestrich G, Haeselbarth G, Muller EC, Jungblut PR and Kaufmann SH [2003]. Comparative proteome analysis of culture supernatant proteins from virulent Mycobacterium tuberculosis H37Rv and attenuated M. bovis BCG Copenhagen. Proteomics
- Ribeiro-Guimarães ML et al. [2007]. Comparative genomics of mycobacterial proteases. Homology
- Målen H et al. [2007]. Comprehensive analysis of exported proteins from Mycobacterium tuberculosis H37Rv. Proteomics
- Målen H et al. [2010]. Definition of novel cell envelope associated proteins in Triton X-114 extracts of Mycobacterium tuberculosis H37Rv. Proteomics
- Griffin JE et al. [2011]. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. Mutant
- de Souza GA et al. [2011]. Bacterial proteins with cleaved or uncleaved signal peptides of the general secretory pathway. Proteomics
- DeJesus MA et al. [2017]. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. Mutant
- Minato Y et al. [2019]. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways. Mutant