Gene Rv2949c
in Mycobacterium tuberculosis H37Rv
General annotation
Type | CDS |
Function | Catalyzes the conversion of chorismate to 4-hydroxybenzoate [catalytic activity: chorismate = 4-hydroxybenzoate + pyruvate] |
Product | Chorismate pyruvate lyase |
Comments | Rv2949c, (MTCY349.41), len: 199 aa. Chorismate pyruvate lyase, equivalent to Q9CD83|ML0133 hypothetical protein from Mycobacterium leprae (210 aa), FASTA scores: opt: 797, E(): 7.4e-47, (62.55% identity in 195 aa overlap). Equivalent to AAK47348 from Mycobacterium tuberculosis strain CDC1551 (212 aa) but shorter 13 aa. A core mycobacterial gene; conserved in mycobacterial strains (See Marmiesse et al., 2004). |
Functional category | Intermediary metabolism and respiration |
Proteomics | Identified by mass spectrometry in whole cell lysates of M. tuberculosis H37Rv but not the culture filtrate or membrane protein fraction (See de Souza et al., 2011). Translational start site supported by proteomics data (See de Souza et al., 2011) (See Kelkar et al., 2011). |
Transcriptomics | mRNA identified by DNA microarray analysis: possibly down-regulated by hrcA|Rv2374c, and down-regulated after 4h, 24h and 96h of starvation (see citations below). |
Mutant | Non-essential gene for in vitro growth of H37Rv in a MtbYM rich medium, by Himar1 transposon mutagenesis (see Minato et al. 2019). Non-essential gene for in vitro growth of H37Rv, by analysis of saturated Himar1 transposon libraries (see DeJesus et al. 2017). Non essential gene by Himar1 transposon mutagenesis in H37Rv strain (see Sassetti et al., 2003). Essential gene for in vitro growth of H37Rv, by Himar1 transposon mutagenesis (See Griffin et al., 2011). Check for mutants available at TARGET website |
Coordinates
Type | Start | End | Orientation |
---|---|---|---|
CDS | 3299971 | 3300570 | - |
Genomic sequence
Feature type
Upstream flanking region (bp)
Downstream flanking region (bp)
Update
Protein sequence
>Mycobacterium tuberculosis H37Rv|Rv2949c|Rv2949c MTECFLSDQEIRKLNRDLRILIAANGTLTRVLNIVADDEVIVQIVKQRIHDVSPKLSEFEQLGQVGVGRVLQRYIILKGRNSEHLFVAAESLIAIDRLPAAIITRLTQTNDPLGEVMAASHIETFKEEAKVWVGDLPGWLALHGYQNSRKRAVARRYRVISGGQPIMVVTEHFLRSVFRDAPHEEPDRWQFSNAITLAR
Bibliography
- Stewart GR et al. [2002]. Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays. Transcriptome Regulation
- Betts JC et al. [2002]. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Transcriptome
- Sassetti CM et al. [2003]. Genes required for mycobacterial growth defined by high density mutagenesis. Mutant
- Marmiesse M, Brodin P, Buchrieser C, Gutierrez C, Simoes N, Vincent V, Glaser P, Cole ST and Brosch R [2004]. Macro-array and bioinformatic analyses reveal mycobacterial 'core' genes, variation in the ESAT-6 gene family and new phylogenetic markers for the Mycobacterium tuberculosis complex. Homology
- Stadthagen G et al. [2005]. p-Hydroxybenzoic acid synthesis in Mycobacterium tuberculosis. Function Product
- Kelkar DS et al. [2011]. Proteogenomic analysis of Mycobacterium tuberculosis by high resolution mass spectrometry. Proteomics Sequence
- de Souza GA et al. [2011]. Bacterial proteins with cleaved or uncleaved signal peptides of the general secretory pathway. Proteomics
- Griffin JE et al. [2011]. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. Mutant
- de Souza GA et al. [2011]. Proteogenomic analysis of polymorphisms and gene annotation divergences in prokaryotes using a clustered mass spectrometry-friendly database. Proteomics Sequence
- DeJesus MA et al. [2017]. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. Mutant
- Minato Y et al. [2019]. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways. Mutant