Gene Rv1080c
in Mycobacterium tuberculosis H37Rv
General annotation
Type | CDS |
Function | Necessary for efficient RNA polymerase transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent trancript by cleavage factors such as GREA or GREB allows the resumption of elongation from the new 3'terminus. GREA releases sequences of 2 to 3 nucleotides |
Product | Probable transcription elongation factor GreA (transcript cleavage factor GreA) |
Comments | Rv1080c, (MTV017.33c), len: 164 aa. Probable greA, transcription elongation factor G, closest to P46808|GREA_MYCLE transcription elongation factor G from Mycobacterium leprae (202 aa), FASTA scores: opt: 1005, E(): 0, (94.5% identity in 164 aa overlap); and similar to many e.g. P21346|GREA_ECOLI from Escherichia coli (158 aa), FASTA scores: opt: 257, E(): 5.7e-10, (37.2% identity in 148 aa overlap); etc. Contains two PS00829 and one PS00830 Prokaryotic transcription elongation factors signatures 1 and 2, respectively. Belongs to the GREA/GREB family. |
Functional category | Information pathways |
Proteomics | The product of this CDS corresponds to spots 5_67 and 5_55 identified in culture supernatant by proteomics at the Max Planck Institute for Infection Biology, Berlin, Germany (see citations below). Identified in the membrane fraction of M. tuberculosis H37Rv using 1D-SDS-PAGE and uLC-MS/MS (See Gu et al., 2003). Identified in the culture supernatant of M. tuberculosis H37Rv using mass spectrometry (See Mattow et al., 2003). Identified in the cytosol of M. tuberculosis H37Rv using 2DLC/MS (See Mawuenyega et al., 2005). Identified by mass spectrometry in Triton X-114 extracts of M. tuberculosis H37Rv (See Malen et al., 2010). Identified by mass spectrometry in the culture filtrate, membrane protein fraction, and whole cell lysates of M. tuberculosis H37Rv (See de Souza et al., 2011). Translational start site supported by proteomics data (See de Souza et al., 2011) (See Kelkar et al., 2011). |
Mutant | Non-essential gene for in vitro growth of H37Rv in a MtbYM rich medium, by Himar1 transposon mutagenesis (see Minato et al. 2019). Non-essential gene for in vitro growth of H37Rv, by analysis of saturated Himar1 transposon libraries (see DeJesus et al. 2017). Non essential gene by Himar1 transposon mutagenesis in H37Rv strain (see Sassetti et al., 2003). Essential gene for in vitro growth of H37Rv, by Himar1 transposon mutagenesis (See Griffin et al., 2011). Check for mutants available at TARGET website |
Coordinates
Type | Start | End | Orientation |
---|---|---|---|
CDS | 1205304 | 1205798 | - |
Genomic sequence
Feature type
Upstream flanking region (bp)
Downstream flanking region (bp)
Update
Protein sequence
>Mycobacterium tuberculosis H37Rv|Rv1080c|greA MTDTQVTWLTQESHDRLKAELDQLIANRPVIAAEINDRREEGDLRENGGYHAAREEQGQQEARIRQLQDLLSNAKVGEAPKQSGVALPGSVVKVYYNGDKSDSETFLIATRQEGVSDGKLEVYSPNSPLGGALIDAKVGETRSYTVPNGSTVSVTLVSAEPYHS
Bibliography
- Mollenkopf HJ et al. [1999]. A dynamic two-dimensional polyacrylamide gel electrophoresis database: the mycobacterial proteome via Internet. Proteomics
- Jungblut PR, Schaible UE, Mollenkopf HJ, Zimny-Arndt U, Raupach B, Mattow J, Halada P, Lamer S, Hagens K and Kaufmann SH [1999]. Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens. Proteomics
- Mattow J, Schaible UE, Schmidt F, Hagens K, Siejak F, Brestrich G, Haeselbarth G, Muller EC, Jungblut PR and Kaufmann SH [2003]. Comparative proteome analysis of culture supernatant proteins from virulent Mycobacterium tuberculosis H37Rv and attenuated M. bovis BCG Copenhagen. Proteomics
- Sassetti CM et al. [2003]. Genes required for mycobacterial growth defined by high density mutagenesis. Mutant
- Gu S et al. [2003]. Comprehensive proteomic profiling of the membrane constituents of a Mycobacterium tuberculosis strain. Proteomics
- Mawuenyega KG et al. [2005]. Mycobacterium tuberculosis functional network analysis by global subcellular protein profiling. Proteomics
- MÃ¥len H et al. [2010]. Definition of novel cell envelope associated proteins in Triton X-114 extracts of Mycobacterium tuberculosis H37Rv. Proteomics
- de Souza GA et al. [2011]. Bacterial proteins with cleaved or uncleaved signal peptides of the general secretory pathway. Proteomics
- Kelkar DS et al. [2011]. Proteogenomic analysis of Mycobacterium tuberculosis by high resolution mass spectrometry. Proteomics Sequence
- Griffin JE et al. [2011]. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. Mutant
- de Souza GA et al. [2011]. Proteogenomic analysis of polymorphisms and gene annotation divergences in prokaryotes using a clustered mass spectrometry-friendly database. Proteomics Sequence
- DeJesus MA et al. [2017]. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. Mutant
- Minato Y et al. [2019]. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways. Mutant